首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HolC-HolD (χψ) complex is part of the DNA polymerase III holoenzyme (Pol III HE) clamp-loader. Several lines of evidence indicate that both leading- and lagging-strand synthesis are affected in the absence of this complex. The Escherichia coli ΔholD mutant grows poorly and suppressor mutations that restore growth appear spontaneously. Here we show that duplication of the ssb gene, encoding the single-stranded DNA binding protein (SSB), restores ΔholD mutant growth at all temperatures on both minimal and rich medium. RecFOR-dependent SOS induction, previously shown to occur in the ΔholD mutant, is unaffected by ssb gene duplication, suggesting that lagging-strand synthesis remains perturbed. The C-terminal SSB disordered tail, which interacts with several E. coli repair, recombination and replication proteins, must be intact in both copies of the gene in order to restore normal growth. This suggests that SSB-mediated ΔholD suppression involves interaction with one or more partner proteins. ssb gene duplication also suppresses ΔholC single mutant and ΔholC ΔholD double mutant growth defects, indicating that it bypasses the need for the entire χψ complex. We propose that doubling the amount of SSB stabilizes HolCD-less Pol III HE DNA binding through interactions between SSB and a replisome component, possibly DnaE. Given that SSB binds DNA in vitro via different binding modes depending on experimental conditions, including SSB protein concentration and SSB interactions with partner proteins, our results support the idea that controlling the balance between SSB binding modes is critical for DNA Pol III HE stability in vivo, with important implications for DNA replication and genome stability.  相似文献   

2.
Escherichia coli dinB encodes the specialized DNA polymerase DinB (Pol IV), which is induced as part of the SOS stress-response system and functions in translesion synthesis (TLS) to relieve the replicative Pol III that is stalled at DNA lesions. As the number of DinB molecules, even in unstressed cells, is greater than that required to accomplish TLS, it is thought that dinB plays some additional physiological role. Here, we overexpressed dinB under the tightly regulable arabinose promoter and looked for a distinct phenotype. Upon induction of dinB expression, progression of the replication fork was immediately inhibited at random genomic positions, and the colony-forming ability of the cells was reduced. Overexpression of mutated dinB alleles revealed that the structural requirements for these two inhibitory effects and for TLS were distinct. The extent of in vivo inhibition displayed by a mutant DinB matched the extent of its in vitro impedance, at near-physiological concentration, of a moving Pol III. We suggest that DinB targets Pol III, thereby acting as a brake on replication fork progression. Because the brake operates when cells have excess DinB, as they do under stress conditions, it may serve as a checkpoint that modulates replication to safeguard genome stability.  相似文献   

3.
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (−1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the τ subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of τ, essential for interaction of τ with the α (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered α-τ interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of τ subunit, in securing a high fidelity of replication.  相似文献   

4.
Escherichia coli DNA polymerase III (Pol III) is one of the best studied replicative DNA polymerases. Here we report the properties of an E. coli mutant that lacks one of the subunits of the Pol III clamp loader complex, Psi (psi), as a result of the complete inactivation of the holD gene. We show that, in this mutant, chronic induction of the SOS response in a RecFOR-dependent way leads to lethality at high temperature. The SOS-induced proteins that are lethal in the holD mutant are the specialized DNA polymerases Pol II and Pol IV, combined with the division inhibitor SfiA. Prevention of SOS induction or inactivation of Pol II, Pol IV and SfiA encoding genes allows growth of the holD mutant, although at a reduced rate compared to a wild-type cell. In contrast, the SOS-induced Pol V DNA polymerase does not participate to the lethality of the holD mutant. We conclude that: (i) Psi is essential for efficient replication of the E. coli chromosome; (ii) SOS-induction of specialized DNA polymerases can be lethal in cells in which the replicative polymerase is defective, and (iii) specialized DNA polymerases differ in respect to their access to inactivated replication forks.  相似文献   

5.
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.  相似文献   

6.
The dnaN159 allele encodes a temperature-sensitive mutant form of the β sliding clamp (β159). SOS-induced levels of DNA polymerase IV (Pol IV) confer UV sensitivity upon the dnaN159 strain, while levels of Pol IV ~4-fold higher than those induced by the SOS response severely impede its growth. Here, we used mutations in Pol IV that disrupted specific interactions with the β clamp to test our hypothesis that these phenotypes were the result of Pol IV gaining inappropriate access to the replication fork via a Pol III*-Pol IV switch relying on both the rim and cleft of the clamp. Our results clearly demonstrate that Pol IV relied on both the clamp rim and cleft interactions for these phenotypes. In contrast to the case for Pol IV, elevated levels of the other Pols, including Pol II, which was expressed at levels ~8-fold higher than the normal SOS-induced levels, failed to impede growth of the dnaN159 strain. These findings suggest that the mechanism used by Pol IV to switch with Pol III* is distinct from those used by the other Pols. Results of experiments utilizing purified components to reconstitute the Pol III*-Pol II switch in vitro indicated that Pol II switched equally well with both a stalled and an actively replicating Pol III* in a manner that was independent of the rim contact required by Pol IV. These results provide compelling support for the Pol III*-Pol IV two-step switch model and demonstrate important mechanistic differences in how Pol IV and Pol II switch with Pol III*.  相似文献   

7.
Bacterial RarA is thought to play crucial roles in the cellular response to blocked replication forks. We show that lack of Bacillus subtilis RarA renders cells very sensitive to H2O2, but not to methyl methane sulfonate or 4-nitroquinoline-1-oxide. RarA is epistatic to RecA in response to DNA damage. Inactivation of rarA partially suppressed the DNA repair defect of mutants lacking translesion synthesis polymerases. RarA may contribute to error-prone DNA repair as judged by the reduced frequency of rifampicin-resistant mutants in ΔrarA and in ΔpolY1 ΔrarA cells. The absence of RarA strongly reduced the viability of dnaD23ts and dnaB37ts cells upon partial thermal inactivation, suggesting that ΔrarA cells are deficient in replication fork assembly. A ΔrarA mutation also partially reduced the viability of dnaC30ts and dnaX51ts cells and slightly improved the viability of dnaG40ts cells at semi-permissive temperature. These results suggest that RarA links re-initiation of DNA replication with repair-by-recombination by controlling the access of the replication machinery to a collapsed replication fork.  相似文献   

8.
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.  相似文献   

9.
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.  相似文献   

10.
M R Lifsics  E D Lancy  Jr    R Maurer 《Journal of bacteriology》1992,174(21):6965-6973
In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha.  相似文献   

11.
DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog is not involved in damage-induced mutagenesis. However, an operon composed of two hypothetical genes and dnaE2, encoding a second copy of the catalytic subunit of Pol III, is damage inducible in a recA-dependent manner, and is responsible for most ultraviolet (UV) and mitomycin C-induced mutations in C.crescentus. The results demonstrate that the three genes are required for the error-prone processing of DNA lesions. The two hypothetical genes were named imuA and imuB, after inducible mutagenesis. ImuB is similar to proteins of the Y-family of polymerases, and possibly cooperates with DnaE2 in lesion bypass. The mutations arising as a consequence of the activity of the imuAB dnaE2 operon are rather unusual for UV irradiation, including G:C to C:G transversions.  相似文献   

12.
Linear chromosomes and linear plasmids of Streptomyces are capped by terminal proteins that are covalently bound to the 5'-ends of DNA. Replication is initiated from an internal origin, which leaves single-stranded gaps at the 3'-ends. These gaps are patched by terminal protein-primed DNA synthesis. Streptomyces contain five DNA polymerases: one DNA polymerase I (Pol I), two DNA polymerases III (Pol III) and two DNA polymerases IV (Pol IV). Of these, one Pol III, DnaE1, is essential for replication, and Pol I is not required for end patching. In this study, we found the two Pol IVs (DinB1 and DinB2) to be involved in end patching. dinB1 and dinB2 could not be co-deleted from wild-type strains containing a linear chromosome, but could be co-deleted from mutant strains containing a circular chromosome. The resulting ΔdinB1 ΔdinB2 mutants supported replication of circular but not linear plasmids, and exhibited increased ultraviolet sensitivity and ultraviolet-induced mutagenesis. In contrast, the second Pol III, DnaE2, was not required for replication, end patching, or ultraviolet resistance and mutagenesis. All five polymerase genes are relatively syntenous in the Streptomyces chromosomes, including a 4-bp overlap between dnaE2 and dinB2. Phylogenetic analysis showed that the dinB1-dinB2 duplication occurred in a common actinobacterial ancestor.  相似文献   

13.
Escherichia coli DNA polymerase IV (Pol IV, also known as DinB) is a Y-family DNA polymerase capable of catalyzing translesion DNA synthesis (TLS) on certain DNA lesions, and accumulating data suggest that Pol IV may play an important role in copying various kinds of spontaneous DNA damage including N2-dG adducts and alkylated bases. Pol IV has a unique ability to coexist with Pol III on the same β clamp and to positively dissociate Pol III from β clamp in a concentration-dependent manner. Reconstituting the entire process of TLS in vitro using E. coli replication machinery and Pol IV, we observed that a replication fork stalled at (−)-trans-anti-benzo[a]pyrene-N2-dG lesion on the leading strand was efficiently and quickly recovered via two sequential switches from Pol III to Pol IV and back to Pol III. Our results suggest that TLS by Pol IV smoothes the way for the replication fork with minimal interruption.  相似文献   

14.
Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE+ cells because the dnaE915 allele is known to have an altered genetic interaction with dinB+ compared to its interaction with dnaE+. Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB+ upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE+ strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.  相似文献   

15.
An insertion in the promoter of the operon that encodes the molecular chaperone GroE was isolated as an antimutator for stationary-phase or adaptive mutation. The groE operon consists of two genes, groES and groEL; point mutations in either gene conferred the same phenotype, reducing Lac+ adaptive mutation 10- to 20-fold. groE mutant strains had 1/10 the amount of error-prone DNA polymerase IV (Pol IV). In recG+ strains, the reduction in Pol IV was sufficient to account for their low rate of adaptive mutation, but in recG mutant strains, a deficiency of GroE had some additional effect on adaptive mutation. Pol IV is induced as part of the SOS response, but the effect of GroE on Pol IV was independent of LexA. We were unable to show that GroE interacts directly with Pol IV, suggesting that GroE may act indirectly. Together with previous results, these findings indicate that Pol IV is a component of several cellular stress responses.  相似文献   

16.
Replication of damaged DNA, also termed as translesion synthesis (TLS), involves specialized DNA polymerases that bypass DNA lesions. In Escherichia coli, although TLS can involve one or a combination of DNA polymerases depending on the nature of the lesion, it generally requires the Pol V DNA polymerase (formed by two SOS proteins, UmuD' and UmuC) and the RecA protein. In addition to being an essential component of translesion DNA synthesis, Pol V is also an antagonist of RecA-mediated recombination. We have recently isolated umuD' and umuC mutants on the basis of their increased capacity to inhibit homologous recombination. Despite the capacity of these mutants to form a Pol V complex and to interact with the RecA polymer, most of them exhibit a defect in TLS. Here, we further characterize the TLS activity of these Pol V mutants in vivo by measuring the extent of error-free and mutagenic bypass at a single (6-4)TT lesion located in double stranded plasmid DNA. TLS is markedly decreased in most Pol V mutants that we analyzed (8/9) with the exception of one UmuC mutant (F287L) that exhibits wild-type bypass activity. Somewhat unexpectedly, Pol V mutants that are partially deficient in TLS are more severely affected in mutagenic bypass compared to error-free synthesis. The defect in bypass activity of the Pol V mutant polymerases is discussed in light of the location of the respective mutations in the 3D structure of UmuD' and the DinB/UmuC homologous protein Dpo4 of Sulfolobus solfataricus.  相似文献   

17.
Biophysical and structural studies have defined many of the interactions that occur between individual components or subassemblies of the bacterial replicase, DNA polymerase III holoenzyme (Pol III HE). Here, we extended our knowledge of residues and interactions that are important for the first step of the replicase reaction: the ATP-dependent formation of an initiation complex between the Pol III HE and primed DNA. We exploited a genetic selection using a dominant negative variant of the polymerase catalytic subunit that can effectively compete with wild-type Pol III α and form initiation complexes, but cannot elongate. Suppression of the dominant negative phenotype was achieved by secondary mutations that were ineffective in initiation complex formation. The corresponding proteins were purified and characterized. One class of mutant mapped to the PHP domain of Pol III α, ablating interaction with the ϵ proofreading subunit and distorting the polymerase active site in the adjacent polymerase domain. Another class of mutation, found near the C terminus, interfered with τ binding. A third class mapped within the known β-binding domain, decreasing interaction with the β2 processivity factor. Surprisingly, mutations within the β binding domain also ablated interaction with τ, suggesting a larger τ binding site than previously recognized.  相似文献   

18.
Genetic evidence suggests that the Bacillus subtilis dnaX gene only encodes for the τ subunit of both DNA polymerases III (Pol IIIs). The B.subtilis full-length protein and their mutant derivatives τ(373– 563) (lacking the N-terminal, domains I–III or amino acid residues 1–372) and τ(1–372) (lacking the C-terminal region or amino acids 373–563) have been purified. The τ protein forms tetramers, τ(373– 563) forms dimers, whereas τ(1–372), depending on the ionic strength, forms trimers or tetramers in solution. In the absence of single-stranded (ss) DNA and a nucleotide cofactor, τ interacts with the SPP1 hexameric replicative G40P DNA helicase in solution or with G40P-ATP bound to ssDNA, with a 1:1 stoichiometry. G40P(109–442), lacking the N-terminal amino acid residues 1–108, interacts with the C-terminal moiety of τ. The data indicate that the interaction of G40P with the τ subunit of Pol III, is relevant for the loading of the Pol IIIs into the SPP1 G38P-promoted open complex.  相似文献   

19.
Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition.  相似文献   

20.
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant beta clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant beta clamp protein (beta159) is impaired for interactions with the alpha catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the beta clamp might help to coordinate protein traffic at the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号