首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non‐randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA. Through use of RNAseq analysis, we identified that the natural rocA mutation present within M3 isolates leads to the enhanced expression of more than a dozen immunomodulatory virulence factors, enhancing phenotypes such as hemolysis and NAD+ hydrolysis. Consequently, an M3 GAS isolate survived human phagocytic killing at a level 13‐fold higher than a rocA complemented derivative, and was significantly more virulent in a murine bacteremia model of infection. Finally, we identified that RocA functions through the CovR/S two‐component system as levels of phosphorylated CovR increase in the presence of functional RocA, and RocA has no regulatory activity following covR or covS mutation. Our data are consistent with RocA interfacing with the CovR/S two‐component system, and that the absence of this activity in M3 GAS potentiates the severity of invasive infections caused by isolates of this serotype.  相似文献   

2.
Bacterial pathogens commonly show intra‐species variation in virulence factor expression and often this correlates with pathogenic potential. The group A Streptococcus (GAS) produces a small regulatory RNA (sRNA), FasX, which regulates the expression of pili and the thrombolytic agent streptokinase. As GAS serotypes are polymorphic regarding (a) FasX abundance, (b) the fibronectin, collagen, T‐antigen (FCT) region of the genome, which contains the pilus genes (nine different FCT‐types), and (c) the streptokinase‐encoding gene (ska) sequence (two different alleles), we sought to test whether FasX regulates pilus and streptokinase expression in a serotype‐specific manner. Parental, fasX mutant and complemented derivatives of serotype M1 (ska‐2, FCT‐2), M2 (ska‐1, FCT‐6), M6 (ska‐2, FCT‐1) and M28 (ska‐1, FCT‐4) isolates were compared. While FasX reduced pilus expression in each serotype, the molecular basis differed, as FasX bound, and inhibited the translation of, different FCT‐region mRNAs. FasX enhanced streptokinase expression in each serotype, although the degree of regulation varied. Finally, we established that the regulation afforded by FasX enhances GAS virulence, assessed by a model of bacteremia using human plasminogen‐expressing mice. Our data are the first to identify and characterize serotype‐specific regulation by an sRNA in GAS, and to show an sRNA directly contributes to GAS virulence.  相似文献   

3.
4.
5.
6.
7.
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.  相似文献   

8.
Streptococcus pyogenes (group A streptococcus, GAS) secretes streptokinase, a potent plasminogen activating protein. Among GAS isolates, streptokinase gene sequences (ska) are polymorphic and can be grouped into two distinct sequence clusters (termed cluster type‐1 and cluster type‐2) with cluster type‐2 being further divided into sub‐clusters type‐2a and type‐2b. In this study, far‐UV circular dichroism spectroscopy indicated that purified streptokinase variants of each type displayed similar secondary structure. Type‐2b streptokinase variants could not generate an active site in Glu‐plasminogen through non‐proteolytic mechanisms while all other variants had this capability. Furthermore, when compared with other streptokinase variants, type‐2b variants displayed a 29‐ to 35‐fold reduction in affinity for Glu‐plasminogen. All SK variants could activate Glu‐plasminogen when an activator complex was preformed with plasmin; however, type‐2b and type‐1 complexes were inhibited by α2‐antiplasmin. Exchanging skatype‐2a in the M1T1 GAS strain 5448 with skatype‐2b caused a reduction in virulence while exchanging skatype‐2a with skatype‐1 into 5448 produced an increase in virulence when using a mouse model of invasive disease. These findings suggest that streptokinase variants produced by GAS isolates utilize distinct plasminogen activation pathways, which directly affects the pathogenesis of this organism.  相似文献   

9.
Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.  相似文献   

10.
11.
12.
13.
14.
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable f ibronectin‐binding, c ollagen‐binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT‐6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain‐of‐function mutants we show that, unlike other GAS pili, the FCT‐6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT‐6 pili.  相似文献   

15.
The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram‐positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate‐dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)‐mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC‐encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose‐specific EII locus, encoded by manLMN, was expressed as a mannose‐inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose‐specific EII also acted to prevent the early onset of SLS‐mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain‐specific needs.  相似文献   

16.
17.
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.  相似文献   

18.
The M3 Serotype of Group A Streptococcus (GAS) is one of the three most frequent serotypes associated with severe invasive GAS infections, such as necrotizing fasciitis, in the United States and other industrialized countries. The basis for this association and hypervirulence of invasive serotype M3 GAS is not fully understood. In this study, the sequenced serotype M3 strain, MGAS315, and serotype M28 strain, MGAS6180, were characterized in parallel to determine whether contemporary M3 GAS has a higher capacity to invade soft tissues than M28 GAS. In subcutaneous infection, MGAS315 invaded almost the whole skin, inhibited neutrophil recruitment and TNF-α production, and was lethal in subcutaneous infection of mice, whereas MGAS6180 did not invade skin, induced robust neutrophil infiltration and TNF-α production, and failed to kill mice. In contrast to MGAS6180, MGAS315 had covS G1370T mutation. Either replacement of the covS 1370T gene with wild-type covS in MGAS315 chromosome or in trans expression of wild-type covS in MGAS315 reduced expression of CovRS-controlled virulence genes hasA, spyCEP, and sse by >10 fold. MGAS315 covS wt lost the capacity to extensively invade skin and to inhibit neutrophil recruitment and had attenuated virulence, indicating that the covS G1370T mutation critically contribute to the hypervirulence of MGAS315. Under the background of functional CovRS, MGAS315 covS wt still caused greater lesions than MGAS6180, and, consistently under the background of covS deletion, MGAS6180 ΔcovS caused smaller lesions than MGAS315 ΔcovS. Thus, contemporary invasive M3 GAS has a higher capacity to evade neutrophil and TNF-α responses and to invade soft tissue than M28 GAS and that this skin-invading capacity of M3 GAS is maximized by natural CovRS mutations. These findings enhance our understanding of the basis for the frequent association of M3 GAS with necrotizing fasciitis.  相似文献   

19.
20.
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding d-alanine-d-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid d-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS DeltadltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and DeltadltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the DeltadltA strain was greatly accelerated. Furthermore, we observed the DeltadltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid d-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号