首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aggregation of proteins or peptides in amyloid fibrils is associated with a number of clinical disorders, including Alzheimer''s, Huntington''s and prion diseases, medullary thyroid cancer, renal and cardiac amyloidosis. Despite extensive studies, the molecular mechanisms underlying the initiation of fibril formation remain largely unknown. Several lines of evidence revealed that short amino-acid segments (hot spots), located in amyloid precursor proteins act as seeds for fibril elongation. Therefore, hot spots are potential targets for diagnostic/therapeutic applications, and a current challenge in bioinformatics is the development of methods to accurately predict hot spots from protein sequences. In this paper, we combined existing methods into a meta-predictor for hot spots prediction, called MetAmyl for METapredictor for AMYLoid proteins. MetAmyl is based on a logistic regression model that aims at weighting predictions from a set of popular algorithms, statistically selected as being the most informative and complementary predictors. We evaluated the performances of MetAmyl through a large scale comparative study based on three independent datasets and thus demonstrated its ability to differentiate between amyloidogenic and non-amyloidogenic polypeptides. Compared to 9 other methods, MetAmyl provides significant improvement in prediction on studied datasets. We further show that MetAmyl is efficient to highlight the effect of point mutations involved in human amyloidosis, so we suggest this program should be a useful complementary tool for the diagnosis of these diseases.  相似文献   

2.
Acylphosphatase can be converted in vitro, by addition of trifluoroethanol (TFE), into amyloid fibrils of the type observed in a range of human diseases. The propensity to form fibrils has been investigated for a series of mutants of acylphosphatase by monitoring the range of TFE concentrations that result in aggregation. We have found that the tendency to aggregate correlates inversely with the conformational stability of the native state of the protein in the different mutants. In accord with this, the most strongly destabilized acylphosphatase variant forms amyloid fibrils in aqueous solution in the absence of TFE. These results show that the aggregation process that leads to amyloid deposition takes place from an ensemble of denatured conformations under conditions in which non-covalent interactions are still favoured. These results support the hypothesis that the stability of the native state of globular proteins is a major factor preventing the in vivo conversion of natural proteins into amyloid fibrils under non-pathological conditions. They also suggest that stabilizing the native states of amyloidogenic proteins could aid prevention of amyloidotic diseases.  相似文献   

3.
Amyloid fibrillar aggregates of proteins or peptides are involved in the etiology of several neurodegenerative diseases and represent a major problem in healthcare. Short regions in the protein trigger this aggregation. It is important to understand the basis of such short regions aggregation and amyloidosis for therapeutic intervention. In this study, we describe specific physico-chemical properties of amyloidogenic segments and compare them with non-amyloidogenic segments. First, amyloidogenic segments are characterized by lower values for average net charge, electrostatic potential, solvent accessible surface area and B-factor when compared to the non-amyloidogenic segments of the same proteins. Second, they are enriched in hydrophobic residues and have a tendency to form hydrogen bonds. Thus, amyloidogenic segments have distinct physico-chemical properties that are different from those of non-amyloidogenic segments. Third, and quite unexpectedly, our dynamic simulation studies support the hypothesis that amyloidogenic segments have lower average flexibility than non-amyloidogenic segments. Furthermore, the presence of amyloidogenic segments in disordered proteins does not contradict the observation that amyloidogenic segments are less flexible.  相似文献   

4.
Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85α subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain α-spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt β-conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the self-assembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.  相似文献   

5.
In contrast to most amyloidogenic proteins or peptides that do not contain any significant posttranslational modifications, the prion protein (PrP) is modified with either one or two polysaccharides and a GPI anchor which attaches PrP to the plasma membrane. Like other amyloidogenic proteins, however, PrP adopts a fibrillar shape when converted to a disease-specific conformation. Therefore, PrP polymerization offers a unique opportunity to examine the effects of biologically relevant nonpeptidic modifications on conversion to the amyloid conformation. To test the extent to which a long hydrophobic chain at the C-terminus affects the intrinsic amyloidogenic propensity of PrP, we modified recombinant PrP with an N-myristoylamidomaleimidyl group, which can serve as a membrane anchor. We show that while this modification increases the affinity of PrP for the cell membrane, it does not alter the structure of the protein. Myristoylation of PrP affected amyloid formation in two ways: (i) it substantially decreased the extent of fibrillation, presumably due to off-pathway aggregation, and (ii) it prohibited assembly of filaments into higher order fibrils by preventing their lateral association. The negative effect on lateral association was abolished if the myristoylated moiety at the C-terminus was replaced by a polar group of similar size or by a hydrophobic group of smaller size. When preformed PrP fibrils were provided as seeds, myristoylated PrP supported fibril elongation and formation of higher order fibrils composed of several filaments. Our studies illustrate that, despite a bulky hydrophobic moiety at C-terminus, myristoylated PrP can still incorporate into fibrillar structure and that the C-terminal hydrophobic substitution does not affect the size of the proteinase K resistant core but controls the mode of lateral assembly of filaments into higher order fibrils.  相似文献   

6.
Human and bovine serum albumins are widely known proteins that can form amyloid fibrils under destabilizing conditions. Use of well-known proteins with easily-controlled aggregation process, and comparison of these processes for similar proteins from different species, could help elucidate the nature of the aggregation process implicated in many degenerative diseases, for example Alzheimer’s, Parkinson’s, or type II diabetes. In this work both amyloidogenic mechanisms have been studied by use of infrared spectroscopy in combination with static light scattering, enabling analysis of intra and intermolecular processes and measurement of prefibril and fibril growing quasi-simultaneously. Deeper insight into the rearrangements of the secondary structure of the proteins concomitant with the aggregation process has also been gained by mathematical analysis of the infrared spectra by two-dimensional correlation spectroscopy (2DCOS).  相似文献   

7.
Protein aggregation, being an outcome of improper protein folding, is largely dependent on the folding kinetics of a protein. Previous studies have reported a positive correlation between the stability of the secondary structural elements of a protein and their rate of folding/unfolding. In this in silico study, the secondary and tertiary structures of proteins a) that form inclusion bodies on overexpression in Escherichia coli, b) that form amyloid fibrils and c) that are soluble on overexpression in E. coli are analyzed for certain features that are known to be associated with structural stability. The study revealed that the soluble proteins seem to have a higher rate of folding (based on contact order) and a lower percentage of exposed hydrophobic residues as compared to the inclusion body forming or amyloidogenic proteins. The soluble proteins also seem to have a more favored helix and strand composition (based on the known secondary structural propensities of amino acids). The secondary structure analyses also reveal that the evolutionary pressure is directed against protein aggregation. This understanding of the positive correlation between structural stability and solubility, along with the other parameters known to influence aggregation, could be exploited in the design of mutations aimed at reducing the aggregation propensity of the proteins.  相似文献   

8.
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.  相似文献   

9.
Khare SD  Wilcox KC  Gong P  Dokholyan NV 《Proteins》2005,61(3):617-632
Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to its aggregation in the familial form of the disease amyotrophic lateral sclerosis. The disease-associated mutations are known to destabilize the protein, but the structural basis of the aggregation of the destabilized protein and the structure of aggregates are not well understood. Here, we investigate in silico the sequence and structural determinants of SOD1 aggregation: (1) We identify sequence fragments in SOD1 that have a high aggregation propensity, using only the sequence of SOD1, and (2) we perform molecular dynamics simulations of the SOD1 dimer folding and misfolding. In both cases, we identify identical regions of the protein as having high propensity to form intermolecular interactions. These regions correspond to the N- and C-termini, and two crossover loops and two beta-strands in the Greek-key native fold of SOD1. Our results suggest that the high aggregation propensity of mutant SOD1 may result from a synergy of two factors: the presence of highly amyloidogenic sequence fragments ("hot spots"), and the presence of these fragments in regions of the protein that are structurally most likely to form intermolecular contacts under destabilizing conditions. Therefore, we postulate that the balance between the self-association of aggregation-prone sequences and the specific structural context of these sequences in the native state determines the aggregation propensity of proteins.  相似文献   

10.
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.  相似文献   

11.
Amyloid diseases are characterized by the aggregation of various proteins to form insoluble β-sheet–rich fibrils leading to cell death. Vibrational spectroscopies have emerged as attractive methods to study this process because of the rich structural information that can be extracted without large, perturbative probes. Importantly, specific vibrations such as the amide-I band directly report on secondary structure changes, which are key features of amyloid formation. Beyond intrinsic vibrations, the incorporation of unnatural vibrational probes can improve sensitivity for secondary structure determination (e.g. isotopic labeling), can provide residue-specific information of the surrounding polarity (e.g. unnatural amino acid), and are translatable into cellular studies. Here, we review the latest studies that have leveraged tools from chemical biology for the incorporation of novel vibrational probes into amyloidogenic proteins for both mechanistic and cellular studies.  相似文献   

12.
Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576.  相似文献   

13.
Amyloid β-protein (Aβ) aggregation is considered to be a critical step in the neurodegeneration of Alzheimer's disease (AD). In addition to Aβ, many proteins aggregate into the amyloid state, in which they form elongated fibers with spines comprising stranded β-sheets. However, the cross-seeding effects of other protein aggregates on Aβ aggregation pathways are not completely clear. To investigate the cross-seeding effects of exogenous and human non-CNS amyloidogenic proteins on Aβ aggregation pathways, we examined whether and how sonicated fibrils of casein, fibroin, sericin, actin, and islet amyloid polypeptide affected Aβ40 and Aβ42 aggregation pathways using the thioflavin T assay and electron microscopy. Interestingly, the fibrillar seeds of all amyloidogenic proteins functioned as seeds. The cross-seeding effect of actin was stronger but that of fibroin was weaker than that of other proteins. Furthermore, our nuclear magnetic resonance spectroscopic studies identified the binding sites of Aβ with the amyloidogenic proteins. Our results indicate that the amyloidogenic proteins, including those contained in foods and cosmetics, contribute to Aβ aggregation by binding to Aβ, suggesting their possible roles in the propagation of Aβ amyloidosis.  相似文献   

14.
Calamai M  Taddei N  Stefani M  Ramponi G  Chiti F 《Biochemistry》2003,42(51):15078-15083
A potentially amyloidogenic protein has to be at least partially unfolded to form amyloid aggregates. However, aggregation of the partially or totally unfolded state of a protein is modulated by at least three other factors: hydrophobicity, propensity to form secondary structure, and net charge of the polypeptide chain. We propose to evaluate the relative importance of net charge, as opposed to the other factors, on protein aggregation and amyloidogenicity. For this aim, we have used two homologous proteins that were previously shown to be able to form amyloid fibrils in vitro, the N-terminal domain of HypF from Escherichia coli (HypF-N) and human muscle acylphosphatase (AcP). The aggregation process from an ensemble of partially unfolded conformations is ca. 1000-fold faster for HypF-N than for AcP. This difference can mainly be attributed to a higher hydrophobicity and a lower net charge for HypF-N than for AcP. By using protein engineering methods, we have decreased the net charge of AcP to a value identical to that of wild-type HypF-N and increased the net charge of HypF-N to a value identical to that of wild-type AcP. Amino acid substitutions were selected to minimize changes in hydrophobicity and secondary structure propensities. We were able to estimate that the difference in net charge between the two wild-type proteins contributes to 20-25% of the difference in their aggregation rates. An understanding of the relative influences of these forces in protein aggregation has implications for elucidating the complexity of the aggregation process, for predicting the effect of natural mutations, and for accurate protein design.  相似文献   

15.
The 93-residue N-terminal fragment of apolipoprotein A-I (ApoA-I) is the major constituent of fibrils isolated from patients affected by the amyloidosis caused by ApoA-I mutations. We have prepared eight polypeptides corresponding to all the currently known amyloidogenic variants of the N-terminal region of ApoA-I, other than a truncation mutation, and investigated their aggregation kinetics and the associated structural modifications. All the variants adopted a monomeric highly disordered structure in solution at neutral pH, whereas acidification of the solution induced an unstable α-helical conformation and the subsequent aggregation into the cross-β structure aggregate. Two mutations (Δ70-72 and L90P) almost abrogated the lag phase of the aggregation process, three mutations (Δ60-71, L75P, and W50R) significantly accelerated the aggregation rate by 2- to 3-fold, while the remaining three variants (L64P, L60R, and G26R) were not significantly different from the wild type. Therefore, an increase in aggregation propensity cannot explain per se the mechanism of the disease for all the variants. Prediction of the protection factors for hydrogen exchange in the native state of full-length protein reveals, in almost all the variants, an expansion of the conformational fluctuations that could favour the proteolytic cleavage and the release of the amyloidogenic peptide. Such an event seems to be a necessary prerequisite for ApoA-I fibrillogenesis in vivo, but the observed increased aggregation propensity of certain variants can have a strong influence on the severity of the disease, such as an earlier onset and a faster progression.  相似文献   

16.
Many degenerative disorder such as Parkinsons, Alzheimers, Huntingtons disease, etc are caused due to the deposition of amyloid fibrils, formed due to the ordered aggregation of misfolded/unfolded proteins. Misfolded or unfolded proteins aggregate mostly through hydrophobic interactions which are unexposed in native state, but become exposed upon unfolding. To counteract amyloid related diseases, inhibition of the protein self assembly into fibril is a potential therapeutic strategy. The study aims at investigating the effect of selected compounds, namely trehalose and magnesium chloride hexahydrate towards inhibition and disaggregation of amyloid fibrils using Hen Egg White Lysozyme as a model. We further attempted to understand the mechanism of action with the help of various biophysical, microscopic as well as computational studies. A common mechanism of action was identified where the selected compounds exert their anti-amyloidogenic effects by altering HEWL conformations characterized by reduction in the beta sheet content and decrease in exposed hydrophobic surfaces. The altered conformation seems to have lesser amyloidogenic propensity leading to inhibition as well as disaggregation of amyloids.  相似文献   

17.

Background

The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.

Scope of review

In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.

Major conclusions

Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.

General significance

Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.  相似文献   

18.
Beta-2 microglobulin (β2m) is the light chain of class I major histocompatibility complex (MHC-I). β2m is an intrinsically amyloidogenic protein that can assemble into amyloid fibrils in a concentration dependent manner. β2m is accumulated in serum of haemodialysed patients, and deposited in the skeletal joints, causing dialysis related amyloidosis. Recent reports suggested that the loop comprised between β2m strands D and E is crucial for protein stability and for β2m propensity to aggregate as cross-β structured fibrils. In particular, the role of Trp60 for β2m stability has been highlighted by showing that the Trp60 → Gly β2m mutant is more thermo-stable and less prone to aggregation than the wild type protein. On the contrary the Asp59 → Pro β2m mutant shows lower Tm and stronger tendency to fibril aggregation. To further analyse such properties, the Trp60 → Val β2m mutant has been expressed and purified; the propensity to fibrillar aggregation and the folding stability have been assessed, and the X-ray crystal structure determined to 1.8 Å resolution. The W60V mutant structural features are discussed, focusing on the roles of the DE loop and of residue 60 in relation to β2m structure and its amyloid aggregation trends.  相似文献   

19.
While aggregation‐prone proteins are known to accelerate aging and cause age‐related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG‐4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid‐promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG‐4 to neutralize charge. Our data indicate that MOAG‐4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation‐prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age‐related protein toxicity.  相似文献   

20.
Amyloid fibrils are aggregated and precipitated forms of protein in which the protein exists in highly ordered, long, unbranching threadlike formations that are stable and resistant to degradation by proteases. Fibril formation is an ordered process that typically involves the unfolding of a protein to partially folded states that subsequently interact and aggregate through a nucleation-dependent mechanism. Here we report on studies investigating the molecular basis of the inherent propensity of the milk protein, kappa-casein, to form amyloid fibrils. Using reduced and carboxymethylated kappa-casein (RCMkappa-CN), we show that fibril formation is accompanied by a characteristic increase in thioflavin T fluorescence intensity, solution turbidity, and beta-sheet content of the protein. However, the lag phase of RCMkappa-CN fibril formation is independent of protein concentration, and the rate of fibril formation does not increase upon the addition of seeds (preformed fibrils). Therefore, its mechanism of fibril formation differs from the archetypal nucleation-dependent aggregation mechanism. By digestion with trypsin or proteinase K and identification by mass spectrometry, we have determined that the region from Tyr(25) to Lys(86) is incorporated into the core of the fibrils. We suggest that this region, which is predicted to be aggregation-prone, accounts for the amyloidogenic nature of kappa-casein. Based on these data, we propose that fibril formation by RCMkappa-CN occurs through a novel mechanism whereby the rate-limiting step is the dissociation of an amyloidogenic precursor from an oligomeric state rather than the formation of stable nuclei, as has been described for most other fibril-forming systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号