首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various streptomyces strains [Streptomyces lividans 66, Streptomyces vinaceus, and Strepotmyces coelicolor A3 (2)] acquired the ability to utilize crystalline cellulose (Avicel) after transformation with a multicopy vector containing the cel-1 gene from Streptomyces reticuli. The expression level in these hosts was two to three times lower than in S. reticuli, indicating the absence of positive regulatory elements. Like S. reticuli, they processed the Avicelase to its catalytic domain and to an enzymatically inactive part. The cel-1 gene with its original upstream region was not expressed within Escherichia coli. When cel-1 had been fused in phase with the lacZ gene, large quantities of the fusion protein were produced in E. coli. However, this protein was enzymatically inactive and proteolytically degraded to a series of truncated forms. As the cellulase (Avicelase) synthesized by S. reticuli is not cleaved by the E. coli proteases, its posttranslational modification is proposed. With Bacillus subtilis as host, the cel-1 gene was expressed neither under its own promoter nor under the control of a strong Bacillus promoter.  相似文献   

2.
The bacterium Streptomyces reticuli produces an unusual mycelia-associated cellulase (Avicelase, Cell) which is solely sufficient to degrade crystalline cellulose to cellobiose. The enzyme consists of a binding domain, one adjoining region with unknown function, and a catalytic domain belonging to the cellulase family E. During cultivation, the strain produces a specific protease which processes the Avicelase to a truncated enzyme lacking the binding domain. The cellulase synthesis is regulated by induction (Avicel) and repression (metabolizable sugars and glycerol).  相似文献   

3.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

4.
An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants.  相似文献   

5.
Avicelase II was purified to homogeneity from culture supernatants of Clostridium stercorarium. A complete separation from the major cellulolytic enzyme activity (avicelase I) was achieved by FPLC gel filtration on Superose 12 due to selective retardation of avicelase II. The enzyme has an apparent molecular mass of 87 kDa and a pI of 3.9. Determination of the N-terminal amino acid indicates that avicelase II is not a proteolytically processed product of avicelase I. Maximal activity of avicelase II is observed between pH 5 and 6. In the presence of Ca2+, the enzyme is highly thermostable, exhibiting a temperature optimum around 75 degrees C. Hydrolysis of avicel occurs at a linear rate for three days at 70 degrees C. Avicelase II is active towards unsubstituted celluloses, cellotetraose and larger cellodextrins. It lacks activity towards carboxymethylcellulose and barley beta-glucan. Unlike other bacterial exoglucanases, avicelase II does not hydrolyze aryl-beta-D-cellobiosides. Avicel is degraded to cellobiose and cellotriose at a molar ratio of approximately 4:1. With acid-swollen avicel as substrate, cellotetraose is also formed as an intermediary product, which is further cleaved to cellobiose. The degradation patterns of reduced cellodextrins differ from that expected for a cellobiohydrolase attacking the non-reducing ends of chains; cellopentaitol is degraded to cellobiitol and cellotriose, while cellohexaitol is initially cleaved into cellobiitol and cellotetraose. These findings, taken together, indicate that avicelase II represents a novel type of exoglucanase (cellodextrinohydrolase), which, depending on the accessibility of the substrate, releases cellotetraose, cellotriose, or cellobiose from the non-reducing end of the cellulose chains.  相似文献   

6.
A cellulase component of Avicelase type was obtained from Driselase, a commercial enzyme preparation from a wood-rotting fungus Irpex lacteus (Polyporus tulipiferae). It showed a single band on SDS-polyacrylamide electrophoresis. The amino acid composition of this cellulase resembled those of cellulase components of endo-type from the same fungus. However, it produced exclusively cellobiose from CMC as well as from water-insoluble celluloses such as Avicel or cotton at earlier stages of hydrolysis. In addition, the hydrolysis of CMC practically stopped after an initial rapid stage. The cellulase showed a strong synergistic action with an endo-cellulase of higher randomness (typical CMCase-type) in the hydrolysis of CMC as well as Avicel. In contrast to cellotriose and -tetraose, cellopentaose and -hexaose were attacked very rapidly, and only cellobiose was produced. These results suggest that the cellulase is an exo-type component. However, it mutarotated the products from cellopentaitol in the same direction as endo-cellulases. it represented a relatively large portion of the total cellulase activity, and may play an important role in the degradation of native cellulose in vivo.  相似文献   

7.
8.
9.
Streptomyces reticuli harbors an msiK gene which encodes a protein with an amino acid identify of 90% to a corresponding protein previously identified in Streptomyces lividans. Immunological studies revealed that S. lividans and S. reticuli synthesize their highest levels of MsiK during growth with cellobiose, but not with glucose. Moreover, moderate amounts of MsiK are produced by both species in the course of growth with maltose, melibiose, and xylose and by S. lividans in the presence of xylobiose and raffinose. In contrast, a recently identified cellobiose-binding protein and its distantly related homolog were only found if S. reticuli or S. lividans, respectively, was cultivated with cellobiose. Uptake of cellobiose and maltose was tested and ascertained for S. reticuli and S. lividans, but not for an msiK S. lividans mutant. However, transformants of this mutant carrying the S. reticuli or S. lividans msiK gene on a multicopy plasmid had regained the ability to transport both sugars. The data show that MsiK assists two ABC transport systems.  相似文献   

10.
Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly.  相似文献   

11.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

12.
13.
The reduction of dioxygen by cellobiose oxidase leads to accumulation of H2O2, with either cellobiose or microcrystalline cellulose as electron donor. Cellobiose oxidase will also reduce many Fe(III) complexes, including Fe(III) acetate. Many Fe(II) complexes react with H2O2 to produce hydroxyl radicals or a similarly reactive species in the Fenton reaction as shown: H2O2 + Fe2+----HO. + HO- + Fe3+. The hydroxylation of salicylic acid to 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid is a standard test for hydroxyl radicals. Hydroxylation was observed in acetate buffer (pH 4.0), both with Fe(II) plus H2O2 and with cellobiose oxidase plus cellobiose, O2 and Fe(III). The hydroxylation was suppressed by addition of catalase or the absence of iron [Fe(II) or Fe(III) as appropriate]. Another test for hydroxyl radicals is the conversion of deoxyribose to malondialdehyde; this gave positive results under similar conditions. Further experiments used an O2 electrode. Addition of H2O2 to Fe(II) acetate (pH 4.0) or Fe(II) phosphate (pH 2.8) in the absence of enzyme led to a pulse of O2 uptake, as expected from production of hydroxyl radicals as shown: RH+HO.----R. + H2O; R. + O2----RO2.----products. With phosphate (pH 2.8) or 10 mM acetate (pH 4.0), the O2 uptake pulse was increased by Avicel, suggesting that the Avicel was being damaged. Oxygen uptake was monitored for mixtures of Avicel (5 g.1-1), cellobiose oxidase, O2 and Fe(III) (30 microM). An addition of catalase after 20-30 min indicated very little accumulation of H2O2, but caused a 70% inhibition of the O2 uptake rate. This was observed with either phosphate (pH 2.8) or 10 mM acetate (pH 4.0) as buffer, and is further evidence that oxidative damage had been taking place, until the Fenton reaction was suppressed by catalase. A separate binding study established that with 10 mM acetate as buffer, almost all (98%) of the Fe(III) would have been bound to the Avicel. In the presence of Fe(III), cellobiose oxidase could provide a biological method for disrupting the crystalline structure of cellulose.  相似文献   

14.
An endo-1,4-beta-D-glucanase I (Avicelase I; EC 3.2.1.4) was purified to homogeneity from an extracellular celluloxylanosome of Bacillus circulans F-2. The purification in the presence of 6 M urea yielded homogeneous enzyme. The enzyme had a monomeric structure, its relative molecular mass being 75 kDa as determined by gel filtration and 82 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The pI was 5.4, and the N-terminal amino acid sequence was ASNIGGWVGGNESGFEFG. The optimal pH was 4.5, and the enzyme was stable at pH 4 to 10. The enzyme has a temperature optimum of 50 degrees C, it was stable at 55 degrees C for 46 h, and it retains approximately 20% of its activity after 30 min at 80 degrees C. It showed high-level activity towards carboxymethyl cellulose (CMC) as well as p-nitrophenyl-beta-D-cellobioside, 4-methylumbelliferyl cellobioside, xylan, Avicel, filter paper, and some cello-oligosaccharides. Km values for birch xylan, CMC, and Avicel were 4.8, 7.2, and 87.0 mg/ml, respectively, while Vmax values were 256, 210, and 8.6 mumol x min-1 x mg-1, respectively. Cellotetraose was preferentially cleaved into cellobiose (G2) plus G2, and cellopentaose was cleaved into G2 plus cellotriose (G3), while cellohexaose was cleaved into cellotetraose plus G2 and to a lesser extent G3 plus G3. G3 was not cleaved at all. G2 was the main product of Avicel hydrolysis. Xylotetraose (X4) and xylobiose (X2) were mainly produced by the enzyme hydrolysis of xylan. G2 inhibited the activity of carboxymethyl cellulase and Avicelase, whereas Mg2+ stimulated it. The enzyme was completely inactivated by Hg2+, and it was inhibited by a thiol-blocking reagent. Hydrolysis of CMC took place, with a rapid decrease in viscosity but a slow liberation of reducing sugars. On the basis of these results, it appeared that the cellulase should be regarded as endo-type cellulase, although it hydrolyzed Avicel.  相似文献   

15.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

16.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, β-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20–44·5°C and at pH values 5·2–7·4 with optimal growth at 37–41·5°C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5·0, the optimum temperature was 40°C for the endoglucanase and 50°C for the xylanase. Both enzyme activities were inhibited at 70°C. Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

17.
Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified the major glycosylhydrolases it produced. The most abundant extracellular enzymes in these cultures were a 42-kDa endoglucanase (Cel5A), a 39-kDa xylanase (Xyn10A), and a 28-kDa endoglucanase (Cel12A). Cel5A had significant Avicelase activity--4.5 nmol glucose equivalents released/min/mg protein. It is a processive endoglucanase, because it hydrolyzed Avicel to cellobiose as the major product while introducing only a small proportion of reducing sugars into the remaining, insoluble substrate. Therefore, since G. trabeum is already known to produce a beta-glucosidase, it is now clear that this brown rot fungus produces enzymes capable of yielding assimilable glucose from crystalline cellulose.  相似文献   

18.
Endoglucanase (Egl)-producing bacteria from soil samples were screened using insoluble cellulosic substrates as sole carbon sources at alkaline pH (pH 9-10). Four Egls with Avicelase activity at alkaline pH were found in the culture broth of each isolate. The Egl genes of the isolates (all Paenibacillus spp.) were shotgun cloned and sequenced-all had a 1752bp open reading frame (584 amino acids) with a putative signal sequence (33 amino acids), and encoded mature enzymes of 551 amino acids (58,360-58,672Da). The mature enzymes showed a high degree of similarity to each other (>93% identity), with the next closest similarity to Egl3a of a patented strain of Paenibacillus lautus NCIMB 40250 (81.5-87.3% identity). These enzymes showed low similarity to other known Egls with less than 50% identity. A representative recombinant enzyme degraded lichenan, carboxymethylcellulose (CMC), glucomannan, acid or alkaline swollen celluloses, and microcrystalline cellulose (Avicel). The optimal pH and temperature of the recombinant enzyme for degrading CMC and Avicel were pH 6.0-8.5 and 45-55 degrees C, respectively. Egls belong to glycoside hydrolase family 5 and form a distinct clan based on the phylogenetic analysis of their amino acid sequences.  相似文献   

19.
Formation and location of 1,4-beta-glucanases and 1,4-beta-glucosidases were studied in cultures of Penicillium janthinellum grown on Avicel, sodium carboxymethyl cellulose, cellobiose, glucose, mannose, and maltose. Endo-1,4-beta-glucanases were found to be cell free, and their formation was induced by cellobiose. 1,4-beta-Glucosidases, on the other hand, were formed constitutively and were primarily cell free, but with a small amount strongly associated with the cell wall. Low 1,4-beta-glucosidase activities of periplasmic or intracellular origin were also found. A rotational viscosimetric method was developed to measure the total endo-1,4-beta-glucanase activity of the culture (broth and solids). By this method, it was possible to determine the endo-1,4-beta-glucanase activity not only in the supernatant of the culture but also on the surface of the mycelium or absorbed on residual Avicel. During a 70-liter batch cultivation of P. janthinellum, the adsorption of endo-1,4-beta-glucanases by residual and newly added 10% Avicel was measured. The adsorption of soluble protein and endo-1,4-beta-glucanases by Avicel was found to be largely independent of the pH value but dependent on temperature.  相似文献   

20.
Abstract Growth and production of cellulosome by three strains (YS, LQRI and NCIB 10682) of Clostridium thermocellum were compared using Avicel (microcrystalline cellulose) and cellobiose as carbon sources. All three strains grew faster on cellobiose than on Avicel and produced 0.71–0.74 IU of endoglucanase/ml compared to 0.88–1.18 IU/ml on Avicel. Also, the cellulase produced by these strains in the presence of 0.2–1% cellobiose and Avicel, when compared on the basis of equal units of endoglucanase (0.5 IU), degraded cotton almost completely. SDS-PAGE further confirmed the production of cellulosome by all three strains when grown on cellobiose and Avicel. Thus, the cellobiose, like Avicel, acts as a true inducer of cellulosome in C. thermocellum .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号