首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prion protein (PrP) from sheep was produced in large quantities of entire protein in Escherichia coli after fusion with a carboxy-terminal hexahistidine sequence. In contrast, amino-terminal fusion with glutathione S-transferase (GST) revealed a high susceptibility toward cleavage of the protein. Both recombinant proteins were recognised, at variable levels, in Western blots using a panel of antibodies against the 40-56, 89-104, 98-113 and 112-115 sequences of the prion protein, similarly to the abnormal prion protein extracted from scrapie-infected sheep. Interestingly, monoclonal antibody 3F4 was found to react with these three proteins in Western blot.  相似文献   

2.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

3.
The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrP(res)) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrP(res) detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrP(res) glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.  相似文献   

4.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

5.
Antibodies to the scrapie protein decorate prion rods   总被引:15,自引:0,他引:15  
Scrapie is a degenerative, transmissible neurologic disease of sheep and goats which occurs in the absence of any detectable host immune response. Antibodies to the scrapie agent have been produced after immunization of rabbits with either scrapie prions or the prion protein, PrP 27-30, purified from infected hamster brain. Immunoreactivity of the antisera was assessed by dot and Western immunoblots with purified prions and PrP 27-30. Antibodies raised against infectious prions were more immunoreactive with native than denatured preparations, whereas those raised against PrP 27-30 were more reactive with denatured prion preparations. As determined by second antibody-colloidal gold, both antisera were found to decorate scrapie prion rods in purified preparations. Antibodies to cellular filamentous proteins failed to react with PrP 27-30 or the scrapie prion rods; conversely, antibodies to PrP 27-30 did not exhibit immunoreactivity with cellular filamentous proteins. The monospecificity of the rabbit antiserum raised against PrP 27-30 was established by its reactivity after affinity purification. The purified antibodies reacted with PrP 27-30 on Western blots and with the prion rods. Considerable evidence indicates that the scrapie rods are aggregates of infectious prions; the findings presented here provide an immunologic demonstration that PrP 27-30 is a structural component of the prion rods.  相似文献   

6.
To date, bovine spongiform encephalopathy (BSE) and its human counterpart, variant Creutzfeldt-Jakob disease, have been associated with a single prion strain. This strain is characterised by a unique and remarkably stable biochemical profile of abnormal protease-resistant prion protein (PrP(res)) isolated from brains of affected animals or humans. However, alternate PrP(res) signatures in cattle have recently been discovered through large-scale screening. To test whether these also represent separate prion strains, we inoculated French cattle isolates characterised by a PrP(res) of higher apparent molecular mass--called H-type--into transgenic mice expressing bovine or ovine PrP. All mice developed neurological symptoms and succumbed to these isolates, showing that these represent a novel strain of infectious prions. Importantly, this agent exhibited strain-specific features clearly distinct from that of BSE agent inoculated to the same mice, which were retained on further passage. Moreover, it also differed from all sheep scrapie isolates passaged so far in ovine PrP-expressing mice. Our findings therefore raise the possibility that either various prion strains may exist in cattle, or that the BSE agent has undergone divergent evolution in some animals.  相似文献   

7.
Antibodies to the prion protein (PrP), particularly, monoclonal antibodies, are necessary tools in the diagnostics and study of prion diseases and potential means of their immunotherapy. For the production of monoclonal antibodies, BALB/c mice were immunized by a recombinant bovine PrP. Three stable hybridomas producing antibodies of IgM class were prepared. The antibodies were bound to PrP in a solid-phase enzyme immunoassay and immunoblotting. The epitope mapping accomplished with the use of synthetic peptides showed that an epitope located in region 25–36 of PrP corresponds to one antibody, and epitopes located in region 222–229, to the other two. The antibodies to fragment 222–229 purified by affinity chromatography recognized with a high specificity conglomerates of a pathogenic prion in the brain tissue of cows suffering from spongiform encephalopathy. Thus, in nontransgenic mice, PrP-specific monoclonal antibodies were produced, useful in studies and diagnostics of prion diseases.  相似文献   

8.
Passive immunization with antibodies directed against the cellular form of the prion protein (PrPC) can protect against prion disease. However, active immunization with recombinant prion protein has so far failed to induce antibodies directed against native PrPC expressed on the cell surface. To develop an antiprion vaccine, a retroviral display system presenting either the full-length mouse PrP (PrP209) or the C-terminal 111 amino acids (PrP111) fused to the transmembrane domain of the platelet-derived growth factor receptor was established. Western blot analysis and immunogold electron microscopy of the retroviral display particles revealed successful incorporation of the fusion proteins into the particle membrane. Interestingly, retroviral particles displaying PrP111 (PrPD111 retroparticles) showed higher incorporation efficiencies than those displaying PrP209. Already 7 days after intravenous injection of PrPD111 retroparticles, PrPC-deficient mice (Prnp(o/o)) showed high immunoglobulin M (IgM) and IgG titers specifically binding the native PrPC molecule as expressed on the surface of T cells isolated from PrPC-overexpressing transgenic mice. More importantly, heterozygous Prnp(+/o) mice and also wild-type mice showed PrPC-specific IgM and IgG antibodies upon vaccination with PrPD111 retroparticles, albeit at considerably lower levels. Bacterially expressed recombinant PrP, in contrast, was unable to evoke IgG antibodies recognizing native PrPC in wild-type mice. Thus, our data show that PrP or parts thereof can be functionally displayed on retroviral particles and that immunization with PrP retroparticles may serve as a novel promising strategy for vaccination against transmissible spongiform encephalitis.  相似文献   

9.
Antibodies to the prion protein (PrP) have been critical to the neuropathological and biochemical characterization of PrP-related degenerative diseases in humans and animals. Although PrP is highly conserved evolutionarily, there is some sequence divergence among species; as a consequence, anti-PrP antibodies have a wide spectrum of reactivity when challenged with PrP from diverse species. We have produced an antibody [monoclonal antibody (mAb) 2-40] raised against a synthetic peptide corresponding to residues (106-126 of human PrP and have characterized it by epitope mapping, Western immunoblot analysis, and immunohistochemistry. The antibody recognizes not only human PrP isoforms but also pathological PrP from all species tested (i.e., sheep, hamsters, and mice). Together with the fact that it recognizes the whole PrP in both cellular and scrapie isoforms, mAb 2-40 may be helpful in studying conformational changes of the PrP, as well as establishing a possible connection between human and animal diseases.  相似文献   

10.
Prion diseases are neurodegenerative disorders which cause Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. The infectious agent is a protease resistant isoform (PrP(Sc)) of a host encoded prion protein (PrP(C)). PrP(Sc) proteins are characterized according to size and glycoform pattern. We analyzed the glycoform patterns of PrP(C) obtained from humans, sheep, cattle and mice to find interspecies variability for distinct differentiation among species. To obtain reliable results, the imaging technique was used for measurement of the staining band intensities and reproducible profiles were achieved by many repeated immunoblot analysis. With a set of antibodies, we discovered two distinct patterns which were not species-dependent. One pattern is characterized by high signal intensity for the di-glycosylated isoform using antibodies that bind to the N-terminal region, whereas the other exhibits high intensity for protein bands at the size of the nonglycosylated isoform using antibodies recognizing the C-terminal region. This pattern is the result of an overlap of the nonglycosylated full-length and the glycosylated N-terminal truncated PrP(C) isoforms. Our data demonstrate the importance of antibody selection in characterization of PrP(C).  相似文献   

11.
The protease-resistant prion protein (PrP(res)) of a few natural scrapie isolates identified in sheep, reminiscent of the experimental isolate CH1641 derived from a British natural scrapie case, showed partial molecular similarities to ovine bovine spongiform encephalopathy (BSE). Recent discovery of an atypical form of BSE in cattle, L-type BSE or BASE, suggests that also this form of BSE might have been transmitted to sheep. We studied by Western blot the molecular features of PrP(res) in four "CH1641-like" natural scrapie isolates after transmission in an ovine transgenic model (TgOvPrP4), to see if "CH1641-like" isolates might be linked to L-type BSE. We found less diglycosylated PrP(res) than in classical BSE, but similar glycoform proportions and apparent molecular masses of the usual PrP(res) form (PrP(res) #1) to L-type BSE. However, the "CH1641-like" isolates differed from both L-type and classical BSE by an abundant, C-terminally cleaved PrP(res) product (PrP(res) #2) specifically recognised by a C-terminal antibody (SAF84). Differential immunoprecipitation of PrP(res) #1 and PrP(res) #2 resulted in enrichment in PrP(res) #2, and demonstrated the presence of mono- and diglycosylated PrP(res) products. PrP(res) #2 could not be obtained from several experimental scrapie sources (SSBP1, 79A, Chandler, C506M3) in TgOvPrP4 mice, but was identified in the 87V scrapie strain and, in lower and variable proportions, in 5 of 5 natural scrapie isolates with different molecular features to CH1641. PrP(res) #2 identification provides an additional method for the molecular discrimination of prion strains, and demonstrates differences between "CH1641-like" ovine scrapie and bovine L-type BSE transmitted in an ovine transgenic mouse model.  相似文献   

12.
Prion diseases are neurodegenerative infectious disorders for which no prophylactic regimens are known. In order to induce antibodies/auto-antibodies directed against surface-located PrP(c), we used a covalently linked dimer of mouse prion protein expressed recombinantly in Escherichia coli. Employing dimeric PrP as an immunogen we were able to effectively overcome autotolerance against murine PrP in PrP wild-type mice without inducing obvious side effects. Treatment of prion-infected mouse cells with polyclonal anti-PrP antibodies generated in rabbit or auto-antibodies produced in mice significantly inhibited endogenous PrP(Sc) synthesis. We show that polyclonal antibodies are binding to surface-located PrP(c), thereby interfering with prion biogenesis. This effect is much more pronounced in the presence of full IgG molecules, which, unlike Fab fragments, seem to induce a significant cross-linking of surface PrP. In addition, we found immune responses against different epitopes when comparing antibodies induced in rabbits and PrP wild-type mice. Only in the auto-antibody situation in mice an immune reaction against a region of PrP is found that was reported to be involved in the PrP(Sc) conversion process. Our data point to the possibility of developing means for an active immunoprophylaxis against prion diseases.  相似文献   

13.
To obtain high titer monoclonal antibodies (McAbs) which can react with mammalian prion protein (PrP), Balb/C mice were immunized with bovine (Bo) PrP peptide (BoPrP 209—228 aa) coupled to keyhole limpet hemocyanin (KLH). The hybridoma cell lines secreting monoclonal antibodies against the pep-tide were established by cell fusion and cloning. The obtained McAbs were applied to detect recombi-nant human, bovine and hamster PrP, cellular prion protein (PrPc) in normal bovine brain and patho-genic scrapie prion protein (PrPSc) accumulated in the medulla oblongata of bovine spongiform en-cephalopathy(BSE)specimen with Western blot and immunohistochemical detection, respectively. The current procedure might offer a simple, feasible method to raise high titer antibodies for studying bio-logical features of PrP in mammals, as well as detection of transmissible spongiform encephalopathy (TSE) and diagnosis of BSE, in particular.  相似文献   

14.
BACKGROUND: Prion diseases belong to a group of neurodegenerative disorders affecting humans and animals. The human diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). The pathogenic mechanisms of the prion diseases are not yet understood. Monoclonal antibodies provide valuable tools in the diagnosis, as well as in the basic research, of several diseases; however, monospecific antisera or monoclonal antibodies (mAbs) against human prion proteins were, until now, not available. MATERIALS AND METHODS: We have developed an immunization protocol based on nucleic acid injection into nontolerant PrP0/0 mice. DNA or RNA coding for different human prion proteins including the mutated sequences associated with CJD, GSS, and FFI were injected into muscle tissue. Mice were primarily inoculated with DNA plasmids encoding the prion protein (PRNP) gene and boosted either with DNA, RNA, or recombinant Semliki Forest Virus particles expressing PRNP. Hybridomas were then prepared. RESULTS: Different mAbs against human prion proteins were obtained, and their binding behavior was analyzed by peptide enzyme-linked immunosorbent assay, Western blot, immunofluorescence, and immunoprecipitation. Their cross-reactivity with prion protein from other species was also determined. Our mAbs are directed against four different linear epitopes and may also recognize discontinuous regions of the native prion protein. CONCLUSIONS: These antibodies should allow us to address questions concerning the nature of the prion protein as well as the initiation and progression of prion diseases. Moreover, these mAbs can now be used for the diagnosis of prion diseases of humans and animals.  相似文献   

15.
We generated two recombinant chicken IgYs, designated Ab3-15 and Ab4-19, against mammalian prion protein (PrP) from the single chain fragment of variable region (scFv) antibodies. These two antibodies recognized PrP(Sc) from bovine spongiform encephalopathy (BSE) in cattle and were more sensitive than the corresponding scFv antibodies. These antibodies also recognized PrP(Sc) from other scrapie-infected mammals. These results indicate that Ab3-15 and Ab4-19 are useful for diagnosis of BSE as well as other prion diseases.  相似文献   

16.
The occurrence of multiple strains of prions may reflect conformational variability of PrP(Sc), a disease-associated, aggregated variant of the cellular prion protein, PrP(C). Here we used luminescent conjugated polymers (LCPs), which emit conformation-dependent fluorescence spectra, for characterizing prion strains. LCP reactivity and emission spectra of brain sections discriminated among four immunohistochemically indistinguishable, serially mouse-passaged prion strains derived from sheep scrapie, chronic wasting disease (CWD), bovine spongiform encephalopathy (BSE), and mouse-adapted Rocky Mountain Laboratory scrapie prions. Furthermore, using LCPs we differentiated between field isolates of BSE and bovine amyloidotic spongiform encephalopathy, and identified noncongophilic deposits in prion-infected deer and sheep. We found that fibrils with distinct morphologies generated from chemically identical recombinant PrP yielded unique LCP spectra, suggesting that spectral characteristic differences resulted from distinct supramolecular PrP structures. LCPs may help to detect structural differences among discrete protein aggregates and to link protein conformational features with disease phenotypes.  相似文献   

17.
Identification of the strain of agent responsible for bovine spongiform encephalopathy (BSE) can be made histologically through the analysis of both distribution and intensity of brain vacuolar lesions after BSE transmission to mouse. Another useful way to distinguish the BSE agent from other prion strains is the study of the distribution of the abnormal prion protein (PrP(res)). For that purpose, paraffin-embedded tissue blot (PET-blot) method was applied on brains from C57Bl/6 mice infected with cattle BSE, experimental sheep BSE, or feline spongiform encephalopathy (FSE) from a cheetah. PrP(res) distribution was comparable, whichever of the three BSE agent sources was considered and was distinct from the PrP(res) distribution in C57Bl/6 mice inoculated with a French scrapie isolate or with a mouse-adapted scrapie strain (C506M3). These data confirm a common origin of infectious agent responsible for the British and French cattle BSE. They also indicate that PET-blot method appears as a precise complementary tool in prion strain studies because it offers easy and quick assessment of the PrP(res) mapping. Advantages and limits of the PET-blot method are discussed and compared with other established and validated methods of strain typing.  相似文献   

18.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

19.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

20.
《朊病毒》2013,7(1):61-68
We previously reported that some cattle affected by bovine spongiform encephalopathy (BSE) showed distinct molecular features of the protease-resistant pion protein (PrPres ) in Western blot, with a 1-2 kDa higher apparent molecular mass of the unglycosylated PrPres associated with labelling by antibodies against the 86-107 region of the bovine PrP protein (H-type BSE). By Western blot analyses of PrPres, we now showed that the essential features initially described in cattle were observed with a panel of different antibodies and were maintained after transmission of the disease in C57Bl/6 mice. In addition, antibodies against the C-terminal region of PrP revealed a second, more C-terminally cleaved, form of PrPres (PrPres #2), which, in unglycosylated form, migrated as a ≈ 14 kDa fragment. Furthermore, a PrPres fragment of ≈ 7kDa, which was not labelled by C-terminus-specific antibodies and was thus presumed to be a product of cleavage at both N- and C-terminal sides of PrP protein, was also detected. Both PrPres #2 and ≈ 7 kDa PrPres were detected in cattle and in C57Bl/6 infected mice. These complex molecular features are reminiscent of findings reported in human prion diseases. This raises questions regarding the respective origins and pathogenic mechanisms in prion diseases of animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号