首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

2.
It has been previously shown that Walker 256 tumor cells express a high content of the anti-apoptotic protein Bcl-2 which protects mitochondria against the damaging effects of Ca2+. In the present study, we analyze H2O2-induced apoptotic death in two different types of tumor cells: Walker 256 and SCC-25. Treatment with H2O2 (4mM) increased reactive oxygen species generation and the concentration of cytosolic free Ca2+. These alterations preceded apoptosis in both cell lines. In Walker cells, which show a high Bcl-2/Bax ratio, apoptosis was dependent on calcineurin activation and independent of changes in mitochondrial membrane potential (Δ < eqid1 > m), as well as cytochrome c release. In contrast, in SCC-25 cells, which show a lower Bcl-2/Bax ratio, apoptosis was preceded by a decrease in Δ < eqid2 > m, mitochondrial permeability transition, and cytochrome c release. Caspase-3 activation occurred in both cell lines. The data suggest that although the high Bcl-2/Bax ratio protected the mitochondria of Walker cells from oxidative stress, it was not sufficient to prevent apoptosis through calcineurin pathways.  相似文献   

3.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

4.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

5.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

6.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.  相似文献   

7.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

8.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

9.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.  相似文献   

10.
Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca2+]i in hippocampal neurons. We investigated the effects of H2O2 and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5′-dithio-bis (2-nitrobenzoic acid) (DTNB)—a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H2O2, 1 mM Ch-T, and 500 μM DTNB, induced an sustained elevation of [Ca2+]i by 76.1 ± 3.9%, 86.5 ± 5.0%, and 24.4 ± 3.2% over the basal level, respectively. The elevation induced by H2O2 and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca2+]i, but only partially reduced the effects of H2O2 and Ch-T on [Ca2+]i, the reductions were 44.6 ± 4.2% and 29.6 ± 6.1% over baseline, respectively. The elevation of [Ca2+]i induced by H2O2 and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca2+]i mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.  相似文献   

11.

Background  

Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.  相似文献   

12.
Relevant Ca2+ pools and fluxes in H9c2 cells have been studied using fluorescent indicators and Ca2+-mobilizing agents. Vasopressin produced a cytoplasmic Ca2+ peak with half-maximal effective concentration of 6 nM, whereas thapsigargin-induced Ca2+ increase showed half-maximal effect at 3 nM. Depolarization of the mitochondrial inner membrane by protonophore was also associated with an increase in cytoplasmic Ca2+. Ionomycin induced a small and sustained depolarization, while thapsigargin had a small but transient effect. The thapsigargin-sensitive Ca2+ pool was also sensitive to ionomycin, whereas the protonophore-sensitive Ca2+ pool was not. The vasopressin-induced cytoplasmic Ca2+ signal, which caused a reversible discharge of the sarco-endoplasmic reticulum Ca2+ pool, was sensed as a mitochondrial Ca2+ peak but was unaffected by the permeability transition pore inhibitor cyclosporin A. The mitochondrial Ca2+ peak was affected by cyclosporin A when the Ca2+ signal was induced by irreversible discharge of the intracellular Ca2+ pool, i.e., adding thapsigargin. These observations indicate that the mitochondria interpret the cytoplasmic Ca2+ signals generated in the reticular store.  相似文献   

13.
Abstract: Oxidative insult elicited by hydrogen peroxide (H2O2) was previously shown to increase the basal intracellular Ca2+ concentration in synaptosomes. In the present study, the effect of H2O2 on the depolarization-evoked [Ca2+] signal was investigated. Pretreatment of synaptosomes with H2O2 (0.1–1 mM) augmented the [Ca2+] rise elicited by high K+ depolarization with essentially two alterations, the sudden sharp rise of [Ca2+]i due to K+ depolarization is enhanced and, instead of a decrease to a stable plateau, a slow, steady rise of [Ca2+]i follows the peak [Ca2+]i. H2O2 in the same concentration range lowered the ATP level and the [ATP]/[ADP] ratio. When carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) (1 µM) or rotenone (2 µM)/oligomycin (10 µM) was applied initially to block mitochondrial ATP production, the lowered [ATP]/[ADP] ratio was further reduced by subsequent addition of 0.5 mM H2O2. The decline of the [ATP]/[ADP] ratio was parallel with but could not explain the enhanced K+-evoked [Ca2+]i signal, indicated by experiments in which the [ATP]/[ADP] ratio was decreased by FCCP (0.1 µM) or rotenone (2 µM) to a similar value as by H2O2 without causing any alteration in the [Ca2+]i signal. These results indicate that H2O2-evoked oxidative stress, in its early phase, gives rise to a complex dysfunction in the Ca2+ homeostasis and, parallel with it, to an impaired energy status.  相似文献   

14.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

15.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   

16.
Abstract: The toxicity of thapsigargin, a selective inhibitor of endoplasmic reticular Ca2+-ATPase, was investigated in GT1-7 cells, a murine hypothalamic cell line. Treatment of these cells with 50 or 100 nM thapsigargin greatly reduced cell viability at 24 and 48 h. These doses of thapsigargin induced a rapid rise in free cytosolic Ca2+ ([Ca2+]i), followed by a sustained increase. Addition of EGTA to chelate extracellular Ca2+ diminished somewhat the size of the initial increase of [Ca2+]i caused by thapsigargin, and abolished the sustained increase. The sustained increase could also be abolished by addition of La3+ and by SKF 96365, a drug selective for receptor-mediated calcium entry, but not by verapamil or flunarizine. Pretreatment with 50 µM BAPTA/AM, a cytosolic Ca2+ chelator, inhibited the peak [Ca2+]i caused by thapsigargin but did not inhibit the sustained elevation of [Ca2+]i. Neither EGTA nor BAPTA/AM inhibited the cell death induced by thapsigargin. The cell death was characterized by DNA fragmentation (“laddering”), nuclear condensation and fragmentation, and was inhibited by protein synthesis inhibitor cycloheximide, all characteristic of apoptotic cell death. Overexpression of the proto-oncogene bcl-2 in GT1-7 cells inhibited significantly DNA fragmentation, nuclear condensation and fragmentation, and cell death induced by thapsigargin. However, Bcl-2 did not alter either basal [Ca2+]i or the elevation of [Ca2+]i induced by thapsigargin. Our results suggest that abnormal Ca2+ release from endoplasmic reticulum caused by thapsigargin induces GT1-7 death by apoptosis and that this effect does not depend on Ca2+ influx from the extracellular space. Bcl-2 inhibited apoptosis induced by thapsigargin, but the mechanism is unlikely to be inhibition of endoplasmic reticular Ca2+ release in GT1-7 neuronal cells.  相似文献   

17.

Background

Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date.

Results

Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5–10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose–response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process.

Conclusions

In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.
  相似文献   

18.
19.
Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS). It is well established that ROS also triggers increases in [Ca2+]i. However, the relationship and interaction between salinity stress-induced [Ca2+]i increases and ROS-induced [Ca2+]i increases remain poorly understood. Using an aequorin-based Ca2+ imaging assay we have analyzed [Ca2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca2+]i than did addition of NaCl. These results imply that NaCl-gated Ca2+ channels and H2O2-gated Ca2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.  相似文献   

20.
Jiang J  Wang P  An G  Wang P  Song CP 《Plant cell reports》2008,27(2):377-385
SB203580 is a specific inhibitor of p38 mitogen-activated protein (MAP) kinase and has been widely used to investigate the physiological roles of p38 in animal and yeast cells. Here by using an epidermal strip bioassay, laser-scanning confocal microscopy and whole-cell patch clamp analysis, we assess the effects of pyridinyl imidazoles-like SB203580 on the H2O2 signaling in guard cells of Vicia faba L. The results indicated that SB203580 blocks H2O2- or ABA-induced stomatal closure, ABA-induced H2O2 generation, and decrease in K+ fluxing across plasma membrane of Vicia guard cells by application of ABA and H2O2, whereas its analog SB202474 had no effect on these events. Thus, these results suggest that activation of p38-like MAP kinase modulates guard cell ROS signaling in response to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号