首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.  相似文献   

2.
南京地区落叶栎林主要木本植物的展叶动态研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 植物的展叶过程是由自身遗传因子决定的,同时又受到多种生态因子的调节,反映了植物的生活史对策和群落物种多样性的维持机制。在2001和2002年的3~6月间,不定期记录了南京地区三个落叶栎(Quercus spp.)林中主要木本植物的展叶情况,包括被标记标准枝的叶数、叶的长度、宽度、叶面积、叶干重等参数。结果表明在所调查的落叶栎林中,林冠层物种的成熟叶面积和单位叶面积干重都显著大于林下层物种;最早展叶的物种为林下层物种,但林冠层展叶顺序与林下层无显著差异。叶面积越大、单位叶面积干重越小的物种展叶越晚;林冠层物种展叶较林下层快,物种成熟叶面积越大,展叶速率越大。最后对展叶顺序和展叶速度的生态学意义作了讨论。  相似文献   

3.
南京地区落叶栎林木本植物叶物候研究   总被引:7,自引:1,他引:6       下载免费PDF全文
叶物候参数长期以来被认为与植物的碳获取的最大化有关,能反映物种的资源利用策略。温带地区因为寒冷冬天的限制,延长叶寿命成为一些物种进行生长发育和繁衍的基础。为探讨叶寿命延长的可能途径(早出叶、晚落叶,或两者兼有),该研究以南京地区两个落叶栎(Quercus spp.)林为研究对象,观测了其中木本植物的出叶物候、落叶物候,并分析了它们与叶寿命之间的关系。结果发现:1)不同物种的出叶开始时间相差较大,出叶早的物种早结束出叶过程;2)不同物种的落叶开始时间相差较大,早开始落叶的物种,落叶持续时间较长,落叶结束时间则相对集中。3)相关分析和回归分析都表明,叶寿命与出叶时间和落叶时间显著关联,但早出叶对叶寿命的延长可能更为重要,因为早出叶相对于晚落叶在物种资源利用上比较具有优势。4)不同物种的出叶时间和落叶时间没有显著相关,可能因为出叶过程和落叶过程是由不同的启动因子引起。这说明延长叶寿命不一定同时通过早出叶和晚落叶来达到。  相似文献   

4.
Summary A multispecies canopy photosynthesis simulation model was used to examine the importance of canopy structure in influencing light interception and carbon gain in mixed and pure stands of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor of wheat. In the mixtures, the fraction of the simulated canopy photosynthesis contributed by wheat was found to decline during the growing season and this decline was closely related to reductions in the amount of leaf area in upper canopy layers. For both species in mixture and in monoculture, simulated photosynthesis was greatest in the middle or upper-middle canopy layers and sensitivity analyses revealed that canopy photosynthesis was most sensitive to changes in leaf area and leaf inclination in these layers. Changes in LAI and leaf inclination affected canopy carbon gain differently for mixtures and monocultures, but the responses were not the same for the two species. Results from simulations where the structural characteristics of the two species were substituted indicated that species differences in leaf inclination, sheath area and the fraction of leaf area alive were of minor consequence compared with the differences in total leaf area in influencing relative canopy carbon gain in mixtures. Competition for light in these species mixtures appears to be influenced most by differences in the positioning of leaf area in upper canopy layers which determines, to a great extent, the amount of light intercepted.  相似文献   

5.
Summary The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.  相似文献   

6.
Abstract: In two potentially competing herbaceous plants, the invasive Bunias orientalis L. (Brassicaceae) and the native Picris hieracioides L. (Asteraceae), seasonal changes in leaf CO2 gas exchange and plant growth were studied over an entire growing season from February 1998 to December 1998 in two experimental fields. The study was motivated by the hypothesis that pre-adaptive phenological displacement of alien species relative to the native flora may be an important reason for the observed expansion of B. orientalis in central Europe. We quantified the importance of phenological differences for annual carbon gain in both species by estimating total leaf carbon gain from the results of leaf CO2 exchange and changes in plant leaf area. Bunias orientalis achieved almost half of its annual carbon gain in the time between early September and December, when competition for light by other species, like P. hieracioides , is low. Our quantitative approach corroborates the notion that the phenological shift of a relatively poor competitor, such as B. orientalis , could be of great importance for the success as an invasive species.  相似文献   

7.
Functional traits of light-exposed leaves have been reported to show tree height-dependent change. However, it remains unknown how plastic response of leaf traits to tree height is linked with shoot-level carbon gain. To answer this question, we examined the photosynthetic properties of fully lit current-year shoots in crown tops with various heights for seven deciduous broad-leaved species dominated in a cool–temperate forest in northern Japan. We measured leaf mass, stomatal conductance, nitrogen content, light-saturated net photosynthetic rate (all per leaf lamina area), foliar stable carbon isotope ratio, and shoot mass allocation to leaf laminae. We employed hierarchical Bayesian models to simultaneously quantify inter-trait relationships for all species. We found that leaf and shoot traits were co-varied in association with height, and that there was no quantitative inter-specific difference in leaf- and shoot-level plastic responses to height. Nitrogen content increased and stomatal conductance decreased with height. Reflecting these antagonistic responses to height, photosynthetic rate was almost unchanged with height. Photosynthetic rate divided by stomatal conductance as a proxy of photosynthetic water use efficiency sufficiently explained the variation of foliar carbon isotope ratio. The increase in mass allocation to leaves in a shoot compensated for the height-dependent decline in photosynthetic rate per leaf lamina mass. Consequently, photosynthetic gain at the scale of current-year shoot mass was kept unchanged with tree height. We suggest that the convergent responses of shoot functional traits across species reflect common requirements for trees coexisting in a forest.  相似文献   

8.
Gerhard Zotz  Klaus Winter 《Planta》1993,191(3):409-412
Diel (24 h) courses of net CO2 exchange of leaves were determined in eight species of tropical rainforest plants on Barro Colorado Island, Panama, during 1990 and 1991. The species included three canopy trees, one liana, two epiphytes and one hemiepiphyte. One of the species studied was growing in a rain-forest gap. Daily carbon gain varied considerably across species, leaf age, and season. The analysis of data for all plants from 64 complete day/night cycles revealed a linear relationship between the diurnal carbon gain and the maximum rate of net CO2 uptake, Amax. Nocturnal net carbon loss was about 10% of diurnal carbon gain and was positively related to Amax. We conclude that short-term measurements of light-saturated photosynthesis, performed at periodic intervals throughout the season, allow the annual leaf carbon balance in these rain-forest plants to be predicted.  相似文献   

9.
Leaf phenology dictates the time available for carbon assimilation, transpiration and nutrient uptake in plants. Understanding the environmental cues that control phenology is therefore vital for predicting climate‐related changes to plant and ecosystem function. In contrast to temperate systems, and to a lesser degree, tropical forest systems, the cues initiating leaf drop in tropical savannas are poorly studied. We investigated the cues for leaf fall in a tropical monodominant arid savanna species, Colophospermum mopane, using an irrigation experiment. We tracked soil moisture, solar radiation, air temperature, leaf water status, leaf health and leaf carbon balance through the dry season in both irrigated and control plants. Water was the primary cue driving leaf loss of C. mopane rather than temperature or light. Trees watered throughout the dry season retained their canopies. These leaves remained functional and continued photosynthesis throughout the dry season. Leaf carbon acquisition rates did not decline with leaf age but were affected by soil moisture availability and temperature. Leaf loss did not occur when leaf carbon gain was zero, or when a particular leaf carbon threshold was reached. Colophospermum mopane is facultatively deciduous as water availability determines leaf drop in this widespread arid savanna species. Obligate deciduosity is not the only successful strategy in climates with a long dry season.  相似文献   

10.
The relative advantages of being deciduous or evergreen in subtropical forests and the relationship between leaf phenology and nutrient resorption efficiency are not well understood. The most successful deciduous species (Lyonia ovalifolia) in an evergreen-dominated subtropical montane cloud forest in southwest (SW) China maintains red senescing leaves throughout much of the winter. The aim of this study was to investigate whether red senescing leaves of this species were able to assimilate carbon in winter, to infer the importance of maintaining a positive winter carbon balance in subtropical forests, and to test whether an extended leaf life span is associated with enhanced nutrient resorption and yearly carbon gain. The red senescing leaves of L. ovalifolia assimilated considerable carbon during part of the winter, resulting in a higher yearly carbon gain than co-occurring deciduous species. Its leaf N and P resorption efficiency was higher than for co-occurring non-anthocyanic deciduous species that dropped leaves in autumn, supporting the hypothesis that anthocyanin accumulation and/or extended leaf senescence help in nutrient resorption. Substantial winter carbon gain and efficient nutrient resorption may partially explain the success of L. ovalifolia versus that of the other deciduous species in this subtropical forest. The importance of maintaining a positive carbon balance for ecological success in this forest also provides indirect evidence for the dominance of evergreen species in the subtropical forests of SW China.  相似文献   

11.
Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain. Leaf hydraulic conductance (K(Leaf)), carbon isotope discrimination (Δ(13)C), leaf mass per unit area (LMA) and the driving force for water transport from stem to leaf (ΔΨ(Stem-Leaf)) were characterized for leaves spanning three orders of magnitude in surface area and two orders of magnitude in lifespan. We observed positive isometric scaling between K(Leaf) and leaf area but no relationship between Δ(13)C and leaf area. Leaf lifespan and LMA had minimal effect on K(Leaf) per unit leaf area, but a negative correlation exists among LMA, lifespan, and K(Leaf) per unit dry mass. During periods of leaf water loss, ΔΨ(Stem-Leaf) was relatively constant. We show for the first time that K(Leaf, mass), an index of the carbon cost associated with water use, is negatively correlated with lifespan. This highlights the importance of characterizing K(Leaf, mass) and suggests a tradeoff between resource investment in liquid phase processes and structural rigidity.  相似文献   

12.
? Understory plants are subjected to highly intermittent light availability and their leaf gas exchanges are mediated by delayed responses of stomata and leaf biochemistry to light fluctuations. In this article, the patterns in stomatal delays across biomes and plant functional types were studied and their effects on leaf carbon gains and water losses were quantified. ? A database of more than 60 published datasets on stomatal responses to light fluctuations was assembled. To interpret these experimental observations, a leaf gas exchange model was developed and coupled to a novel formulation of stomatal movement energetics. The model was used to test whether stomatal delays optimize light capture for photosynthesis, whilst limiting transpiration and carbon costs for stomatal movement. ? The data analysis showed that stomatal opening and closing delays occurred over a limited range of values and were strongly correlated. Plant functional type and climate were the most important drivers of stomatal delays, with faster responses in graminoids and species from dry climates. ? Although perfectly tracking stomata would maximize photosynthesis and minimize transpiration at the expense of large opening costs, the observed combinations of opening and closure times appeared to be consistent with a near-optimal balance of carbon gain, water loss and movement costs.  相似文献   

13.
The sexes of dioecious species may differ in a range of vegetative and reproductive traits as well as in physiological traits. In Siparuna grandiflora, a Neotropical dioecious shrub, we examined differences in leaf-level photosynthesis of different classes of leaf age and, using simulation models, explored whether differences in leaf-level carbon gain led to sex differences in whole-plant daily carbon gain. Male plants had higher photosynthetic capacity at the leaf level. As leaves of both sexes aged their photosynthetic capacity and specific leaf area declined as expected. Simulations of daily carbon gain using the architecturally explicit model Y-Plant and a non-architectural model incorporating a wide range of realistic light environments revealed that the difference in leaf-level photosynthetic capacity did not translate into greater crown-level carbon gain for males. Rather, differences in patterns of allocation to leaf area allow females to achieve higher crown-level carbon gain. The results demonstrate that sex differences at the leaf level do not necessarily predict patterns at the whole-plant level.  相似文献   

14.
 研究了西双版纳热带季节雨林6种乔木幼树在林窗中的叶生长与叶虫食动态。6种幼树叶生长主要在雨季(5~10月),在旱季雾凉期(11~2月)叶停止生长。阳性树种旱季干热期(3~4月)开始叶生长,顶极树种至5月雨季初才开始叶生长。表明雾凉期低温抑制两类树种叶生长,干热期水分不足抑制顶极树种叶生长。叶生长同步性(每两个月的叶生长量变异系数C.V.)顺序为:望天树(Shorea chinensis,1.42)>金钩花(Pseuduvaria indochinensis,1.41)>八宝树(Duabanga grandiflora, 1.02)>云南石梓(Gmelina arborea,0.98)>团花树(Anthocephalus chinensis,0.84)和铁刀木(Cassia siamea,0.84)。旱季造成一些种类幼树出现落叶高峰,严重叶虫食也导致云南石梓在7~8月出现落叶高峰。叶虫食主要出现在雨季,团花树和云南石梓在干热期叶生长能减少昆虫取食,但此时铁刀木叶同步生长却不能降低食叶昆虫危害。6种幼树叶生长量年进程与叶虫食量年进程间存在正相关,其中望天树、金钩花、八宝树和团花树分别达到显著(p<0.05)或极显著(p<0.01)水平。望天树和金钩花在雨季初叶同步生长能减轻叶虫食。食叶昆虫偏爱取食幼叶,6种幼树平均幼叶的虫食量占总虫食量的72.9%,幼叶虫食速率平均为成熟叶的4.3倍。  相似文献   

15.
Tropical cloud forests are considered humid ecosystems with frequent cloud cover down to the ground surface. However, seasonal variation in precipitation may induce short-term water stress. For canopy leaves, this water stress may also be a consequence of large atmospheric vapor pressure deficits. The objective of this work was to study five canopy cloud forest species to determine if there are restrictions to leaf gas exchange as a consequence of seasonality in precipitation and to daily water deficit due to air evaporative demand mainly during maximum incoming radiation hours. Seasonal daily courses of microclimatic variables (air temperature, relative humidity, photosynthetic photon flux density) and plant responses (leaf water potential, stomatal conductance, CO2 assimilation rates, leaf nitrogen concentration) were measured at 2400 m asl in Monterrey, an intermontane valley of the Venezuelan Andes. A gradient in terms of responses to water stress conditions was observed between the species, with Clusia multiflora (a 46% reduction in stomatal conductance between seasons) as the most affected and Miconia resimoides (increased stomatal conductance) responding more favorably to slight water stress conditions. If we consider the limitations of water stress and/or light conditions on CO2 assimilation we may arrange the species into those in which water stress conditions have a greater impact on leaf carbon gain, those where light conditions are determinant and one in which both water stress and light conditions may affect leaf carbon assimilation.  相似文献   

16.
We measured rates of leaf senescence and leaf level gas exchange during autumnal senescence for seedlings of five temperate forest tree species under current and elevated atmospheric CO2 concentrations and low- and high-nutrient regimes. Relative indices of whole canopy carbon gain, water loss and water use efficiency through the senescent period were calculated based on a simple integrative model combining gas exchange per unit leaf area and standing canopy area per unit time. Seedlings grown under elevated [CO2] generally had smaller canopies than their current [CO2]-grown counterparts throughout most of the senescent period. This was a result of smaller pre-senescent canopies or accelerated rates of leaf drop. Leaf-level photosynthetic rates were higher under elevated [CO2] for grey birch canopies and for low-nutrient red maple and high-nutrient ash canopies, but declined rapidly to values below those of their current [CO2] counterparts by midway through the senescent period. CO2 enrichment reduced photosynthetic rates for the remaining species throughout some or all of the senescent period. As a result of smaller canopy sizes and reduced photosynthetic rates, elevated [CO2]-grown seedlings had lower indices of whole canopy end-of-season carbon gain with few exceptions. Leaf level transpiration rates were highly variable during autumnal senescence and neither [CO2] nor nutrient regime had consistent effects on water loss per unit leaf area or integrated whole canopy water loss throughout the senescent period. Indices of whole canopy, end-of-season estimates of water use efficiency, however, were consistently lower under CO2 enrichment, with few exceptions. These results suggest that whole canopy end-of-season gas exchange may be altered significantly in an elevated [CO2] world, resulting in reduced carbon gain and water use efficiency for many temperate forest tree seedlings. Seedling growth and survivorship, and ultimately temperate forest regeneration, could be reduced in CO2-enriched forests of the future.  相似文献   

17.
The assimilation of carbon by plant communities (gross primary production [GPP]) is a central concern in plant ecology as well as for our understanding of global climate change. As an alternative to traditional methods involving destructive harvests or time-consuming measurements, we present a simple, general model for GPP as the product of the lifetime carbon gain by a single leaf, the daily leaf production rate, and the length of the favorable period for photosynthesis. To test the model, we estimated leaf lifetime carbon gain for 26 species using the concept of mean labor time for leaves (the part of each day the leaf functions to full capacity), average potential photosynthetic capacity over the leaf lifetime, and functional leaf longevity (leaf longevity discounted for periods within a year wholly unfavorable for photosynthesis). We found that the lifetime carbon gain of leaves was rather constant across species. Moreover, when foliar biomass was regressed against functional leaf longevity, aseasonal and seasonal forests fell on a single line, suggesting that the leaf production rate during favorable periods is not substantially different among forests in the world. The gross production of forest ecosystems then can be predicted to a first approximation simply by the annual duration of the period favorable for photosynthetic activity in any given region.  相似文献   

18.
Productive leaf functional traits of Chinese savanna species   总被引:1,自引:0,他引:1  
The river valleys in Southwest China are characterized by a dry?Chot climate and relatively rich soils, and host valley-type savannas that are dominated by deciduous species. However, little is known about the ecological adaptations of Chinese savanna plants to the local environments. We hypothesize that Chinese savanna species mainly possess a drought-avoiding strategy by having a deciduous leaf habit and have productive leaf traits. To test this hypothesis, we measured 26 anatomical, morphological, physiological, and chemical traits for 33 woody species from a valley savanna in Southwest China and compared them with the literature data of other dry and wet tropical tree species and a global dataset. We found that Chinese savanna species showed drought avoidance adaptations and exhibited productive leaf traits, such as thin and dense leaves with high ratio of palisade to spongy mesophyll, leaf nutrient concentrations and photosynthetic capacity. Correlations of photosynthetic capacity with N, P, and stomatal conductance across Chinese savanna species were consistent with global patterns reported for seed plants. However, the Chinese savanna species had consistently greater carbon gain at a given specific leaf area, N, P, and stomatal conductance, suggesting higher nutrient- and intrinsic water use efficiencies. These results suggest that paradoxically, Chinese savanna species are adapted to the stressful dry?Chot valley habitat by having productive leaves.  相似文献   

19.
《Acta Oecologica》2001,22(2):129-138
The functional variability in leaf angle distribution within the canopy was analysed with respect to regulation of light interception and photoprotection. Leaf orientation strongly determined the maximum photochemical efficiency of PSII (Fv/Fm) during summer: horizontal leaves were highly photoinhibited whereas vertical leaf orientation protected the leaves from severe photoinhibition. The importance of leaf orientation within the canopy was analysed in two Mediterranean macchia species with distinct strategies for drought and photoinhibition avoidance during summer. The semi-deciduous species (Cistus monspeliensis) exhibited strong seasonal but minimal spatial variability in leaf orientation. Reversible structural regulation of light interception by vertical leaf orientation during summer protected the leaves from severe photoinhibition. The evergreen sclerophyll (Quercus coccifera) exhibited high spatial variability in leaf angle distribution throughout the year and was less susceptible to photoinhibition. The importance of both strategies for plant primary production was analysed with a three-dimensional canopy photoinhibition model (CANO-PI). Simulations indicated that high variability in leaf angle orientation in Q. coccifera resulted in whole-plant carbon gain during the summer, which was 94 % of the maximum rate achieved by theoretical homogeneous leaf orientations. The high spatial variability in leaf angle orientation may be an effective compromise between efficient light harvesting and avoidance of excessive radiation in evergreen plants and may optimize annual primary production. Whole plant photosynthesis was strongly reduced by water stress and photoinhibition in C. monspeliensis; however, the simulations indicated that growth-related structural regulation of light interception served as an important protection against photoinhibitory reduction in whole-plant carbon gain.  相似文献   

20.
Leaf and whole plant-level functional traits were studied in five dominant woody savannah species from Central Brazil (Cerrado) to determine whether reduction of nutrient limitations in oligotrophic Cerrado soils affects carbon allocation, water relations and hydraulic architecture. Four treatments were used: control, N additions, P additions and N plus P additions. Fertilizers were applied twice yearly, from October 1998 to March 2004. Sixty-three months after the first nutrient addition, the total leaf area increment was significantly greater across all species in the N- and the N + P-fertilized plots than in the control and in the P-fertilized plots. Nitrogen fertilization significantly altered several components of hydraulic architecture: specific conductivity of terminal stems increased with N additions, whereas leaf-specific conductivity and wood density decreased in most cases. Average daily sap flow per individual was consistently higher with N and N + P additions compared to the control, but its relative increase was not as great as that of leaf area. Long-term additions of N and N + P caused midday PsiL to decline significantly by a mean of 0.6 MPa across all species because N-induced relative reductions in soil-to-leaf hydraulic conductance were greater than those of stomatal conductance and transpiration on a leaf area basis. Phosphorus-fertilized trees did not exhibit significant changes in midday PsiL. Analysis of xylem vulnerability curves indicated that N-fertilized trees were significantly less vulnerable to embolism than trees in control and P-fertilized plots. Thus, N-induced decreases in midday PsiL appeared to be almost entirely compensated by increases in resistance to embolism. Leaf tissue water relations characteristics also changed as a result of N-induced declines in minimum PsiL: osmotic potential at full turgor decreased and symplastic solute content on a dry matter basis increased linearly with declining midday PsiL across species and treatments. Despite being adapted to chronic nutrient limitations, Cerrado woody species apparently have the capacity to exploit increases in nutrient availability by allocating resources to maximize carbon gain and enhance growth. The cost of increased allocation to leaf area relative to water transport capacity involved increased total water loss per plant and a decrease in minimum leaf water potentials. However, the risk of increased embolism and turgor loss was relatively low as xylem vulnerability to embolism and leaf osmotic characteristics changed in parallel with changes in plant water status induced by N fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号