首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the absence of detailed assessments of extinction risk, ecological specialisation is often used as a proxy of vulnerability to environmental disturbances and extinction risk. Numerous indices can be used to estimate specialisation; however, the utility of these different indices to predict vulnerability to future environmental change is unknown. Here we compare the performance of specialisation indices using coral‐feeding butterflyfishes as a model group. Our aims were to 1) quantify the dietary preferences of three butterflyfish species across habitats with differing levels of resource availability; 2) investigate how estimates of dietary specialisation vary with the use of different specialisation indices; 3) determine which specialisation indices best inform predictions of vulnerability to environmental change; and 4) assess the utility of resource selection functions to inform predictions of vulnerability to environmental change. The relative level of dietary specialisation estimated for all three species varied when different specialisation indices were used, indicating that the choice of index can have a considerable impact upon estimates of specialisation. Specialisation indices that do not consider resource abundance may fail to distinguish species that primarily use common resources from species that actively target resources disproportionately more than they are available. Resource selection functions provided the greatest insights into the potential response of species to changes in resource availability. Examination of resource selection functions, in addition to specialisation indices, indicated that Chaetodon trifascialis was the most specialised feeder, with highly conserved dietary preferences across all sites, suggesting that this species is highly vulnerable to the impacts of climate‐induced coral loss on reefs. Our results indicate that vulnerability assessments based on some specialisation indices may be misleading and the best estimates of dietary specialisation will be provided by indices which incorporate resource availability measures, as well as assessing responses of species to changes in resource availability.  相似文献   

2.
Although originally evolved as predators, several species of mammalian carnivores exhibit a great trophic diversity, ranging from hypercarnivory to a high consumption of vegetable food. Habitat characteristics influence food availability and consequently could affect the nutritional composition of the diet of generalist species. By reviewing the available literature, we tested the hypothesis that intraspecific differences in the food habits of badgers (Meles meles) living in different habitats across Europe could affect the percentage of macronutrients (i.e., protein, lipids, and carbohydrates) in their diet. Notwithstanding the different composition of the diet, the percentage of protein and lipids fed by badgers did not vary among temperate forest-pasture mosaics, Mediterranean woodlands, or scrublands and arable lands, suggesting a certain form of regulation of the diet balance. The percentage of carbohydrates was similar in the first two habitats, while it was fivefold higher in arable lands, where cereals were the main food of badgers and were consumed throughout the year. Earthworm consumption by badgers was positively related to the latitude, while the lack of any latitudinal or altitudinal pattern in protein consumption reflected the absence of a gradient in carnivory. A slight inverse latitudinal gradient in lipids consumption probably depended on the use, in southern Europe, of vegetal foods rich in lipids. We hypothesize that in agricultural landscapes dominated by crop cultivations, the decline of animal prey (i.e., earthworms, insects, and vertebrates) due to habitat loss forced badgers to increase the percentage of protein in their diet by over-eating cereals, with the consequence of a disproportionate increase in carbohydrate consumption.  相似文献   

3.
Localised patterns of resource use can be constrained by multiple factors. Comparison of resource use at multiple locations with differing resource availability can allow fundamental specialists to be distinguished from species that simply feed predominantly on prey types that are locally abundant. This study investigates geographic variation in the feeding ecology of coral‐feeding butterflyfishes to examine whether patterns of resource use and levels of dietary specialisation vary among distinct locations, corresponding with changes in resource availability. Our specific aims were to investigate whether the dietary niche breadth of four butterflyfishes varies among five geographically separated locations and assess whether each species utilises similar resources in each location. Resource availability and dietary composition of four butterflyfishes were quantified at three sites across each of five geographic locations throughout the Pacific. Niche breadth, niche overlap, and resource selection functions were calculated for each species at each site and compared among locations. Availability of dietary resources varied significantly among locations and sites. Chaetodon vagabundus, C. citrinellus and C. lunulatus had low levels of dietary specialisation and used different resources in each location. Chaetodon trifascialis had high levels of dietary specialisation and used the same few resources in each location. Our results indicate that relative levels of dietary specialisation among different butterflyfishes do hold at larger spatial scales, however, geographical variation in the dietary composition of all butterflyfishes indicates that prey availability has a fundamental influence on dietary composition. Highly specialised species such as C. trifascialis will be highly vulnerable to coral loss as they appear to be largely inflexible in their dietary composition. However, the increased feeding plasticity observed here for C. trifascialis suggests this species may have a greater capacity to respond to coral loss than previously assumed.  相似文献   

4.
We identified species‐ and community‐level dietary characteristics for a species‐rich Amazonian parrot assemblage to determine relationships among dietary metrics and use of geophagy sites. Previous studies suggest that soil is consumed at geophagy sites in this region mainly to supplement dietary sodium. We accumulated 1400 feeding records for 16 parrot species over 2 yr and found that seeds, flowers, and fruit pulp featured prominently in diets, while bark, insects, and lichen were consumed in small quantities. Food availability across 1819 trees was measured, and we found that flower availability was highest in the dry season and fruit production peaked in the wet season, but that phenology patterns of the 20 most commonly foraged plant species suggest no serious food bottlenecks. Partitioning of available food resources among the 13 most commonly encountered parrots is suggested by an ordination analysis (DCA), which placed the large macaws (Ara) with the Amazona parrots at the ‘primary forest’ end of a dietary resource axis and four smaller species at the ‘successional forest’ end of the axis. Parrot species associated with successional forest also consumed less plant species overall. Furthermore, these parrot species consuming successional forest resources had higher claylick visitation rates than those consuming primary forest resources suggesting they derive the greatest benefits from soil consumption.  相似文献   

5.
We describe temporal patterns of food consumption by Peruvian spider monkeys (Ateles chamek) in a semihumid forest in lowland Bolivia. We assessed dietary composition in relation to temporal variation in abundance, duration, and synchrony of different food items in their home range. We collected data from September 2003 to September 2004, in the forestry concession La Chonta, Department of Santa Cruz. Throughout the period of detailed feeding data collection (February-September 2004), Ateles chamek used Ficus as a staple food resource. Figs constituted almost 50% of their diet in terms of total time spent feeding, and subjects consumed them to a great extent even during times of high overall food availability. This is contrary to the general expectation that for Neotropical frugivores, Ficus is a fallback food in times of fruit scarcity, rather than a staple food resource. Surprisingly, despite being considered ripe fruit specialists, Ateles chamek spent 18% of their feeding times eating unripe figs. Ateles chamek consumed unripe figs all through the year, including periods when ripe figs and other ripe fruit were abundant. We identify other important fallback foods for Ateles chamek in the forest, in particular the ripe fruit of Myrciaria sp.  相似文献   

6.
Seasonal resource availability may act as a constraint on plant phenology and thereby influence the range of growth responses observed among populations of annual species, especially those occupying a wide range of environments. We compared a mesic and a xeric population of the non-native, annual grass, Bromus tectorum, to examine phenology in response to interspecific competition and water availability. Using a target-neighborhood approach, we assessed how phenological patterns of the two populations affected morphological and growth responses to enhanced resource availability represented by late-season soil moisture. The xeric population exhibited a highly constrained phenology and was unable to extend the growing season despite available soil resources. Because of the low phenotypic variation, allocation to reproduction was similar across resource conditions. In contrast, the mesic population flowered later and showed a more opportunistic phenology in response to late-season water availability. The mesic population was not able to maintain consistent reproductive allocation at low resource levels. The responses of the two populations to late-season water availability were not affected by the density of neighboring plants. We suggest that post-introduction selection pressure on B. tectorum in the xeric habitat has resulted in a more fixed phenology which limits opportunistic response to unpredictable, particularly late-season resource availability. Opportunistic and fixed responses represent contrasting strategies for optimizing fitness in temporally varying environments and, while both play important roles for ensuring reproductive success, these results suggest that local adaptation to temporal resource variation may reflect a balance between flexible and inflexible phenology.  相似文献   

7.
The consumption of meat may provide herbivorous animals with important nutrients that are scarce in their plant‐based diet. Seasonal variation in plant food availability has been suggested to motivate dietary flexibility in a range of species and thus primates may seek more prey when key plant resources are unavailable. Alternatively, prey encounter rate may drive meat eating. Here we investigate patterns of meat eating in hamadryas baboons (Papio hamadryas) at Filoha, Awash National Park, Ethiopia. The Filoha baboons rely largely on doum palm fruit (Hyphaene thebaica), which are available most months of the year, and the young leaves of Acacia senegal, which are more abundant during the wet season. We hypothesized that the baboons would consume more meat when H. thebaica and A. senegal were less available, which we tested by comparing meat eating and consumption of these plant food species from March 2005 through February 2006. Our results reveal a high rate of vertebrate meat eating at Filoha (0.028/hour of observation) compared with other hamadryas sites. We found no relationship, however, between meat eating (either insect or vertebrate) and either rainfall or consumption of H. thebaica or A. senegal, indicating that availability of preferred plant resources does not drive meat consumption. Vertebrate consumption and time spent feeding were significantly negatively associated; there was no relationship, however, between the consumption of animal matter and either home range size or daily path length. Vertebrate and insect consumption alternated throughout the year such that the baboons maintained a small amount of animal matter in their diet year‐round. Our results suggest that the baboons do not often actively seek animal matter, but consume it opportunistically, with the presence of locust and dragonfly swarms driving insect consumption, and both prey availability and the availability of feeding time shaping vertebrate predation.  相似文献   

8.
Eurasian badgers, Meles meles, in Mediterranean cork‐oak woodlands live in small groups within territories that embrace a mosaic of habitats where several setts (dens) are scattered. Assuming that their population density was related to home range sizes and that this in turn was influenced by food and water availability and the existence of substrate suitable for sett construction, we explored the relationship between these parameters. Two biotopes were predominantly important in providing food security to badgers in the ‘Grândola’ mountain study area: olive groves and orchards or vegetable gardens. Analysis of the mean total area of these two habitats in the ranges of radio‐tracked badgers permitted us to extrapolate to an estimate that the 66 km2 encompassed eleven areas with the capacity to support badger groups each composed by 6–8 individuals. Since only three groups populated the area we concluded that food availability was not limiting badger density. Sites with surface water in summer (the dry season) seem sufficient to support more badger groups than existed, leading us to believe that this factor was also not limiting badger density. Simultaneously, using a logistic regression model and the biophysical characteristics of sett sites as explanatory variables, four predictor variables determined sett location: the existence of a geological fault/discontinuity, ridges, valleys and the distance to abandoned farm houses, of which the former had the higher odds ratio, being thus the best sett location predictor. Indeed, 56% of the areas predicted with >80% confidence to contain a badger sett were encompassed within a known home range. Therefore, our results suggest that, in Mediterranean cork oak woodlands in SW Portugal, the main factor limiting badger's density is the availability of suitable sites for setts. However, in areas where suitable sites for burrows existed, but food patches were absent, badgers were not found. This could indicate that the presence of both factors was necessary for badgers, although in this area sites suitable for digging setts appeared to be the primary limiting factor.  相似文献   

9.
Identifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers. We used natural pulses of mast‐fruiting of American beech (Fagus grandifolia) to test whether optimal foraging or competition structure the dietary niche breadth and overlap between two congener rodent species (Peromyscus leucopus and P. maniculatus), both of which are generalist consumers. We reconstructed diets seasonally over a 2‐year period using stable isotope analysis (δ13C, δ15N) of hair and of potential dietary items and measured niche dynamics using standard ellipse area calculated within a Bayesian framework. Changes in niche breadth were generally consistent with predictions of optimal foraging theory, with both species consuming more beechnuts (a high‐quality food resource) and having a narrower niche breadth during masting seasons compared to nonmasting seasons when dietary niches expanded and more fungi (a low‐quality food source) were consumed. In contrast, changes in dietary niche overlap were consistent with competition theory, with higher diet overlap during masting seasons than during nonmasting seasons. Overall, dietary niche dynamics were closely tied to beech masting, underscoring that food availability influences competition. Diet plasticity and niche partitioning between the two Peromyscus species may reflect differences in foraging strategies, thereby reducing competition when food availability is low. Such dietary shifts may have important implications for changes in ecosystem function, including the dispersal of fungal spores.  相似文献   

10.
Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of species. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next‐generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three species are driven more by prey availability than by any particular predator‐specific characteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores.  相似文献   

11.
Individual specialisation has been identified in an increasing number of animal species and populations. However, in some groups, such as terrestrial mammals, it is difficult to disentangle individual niche variation from spatial variation in resource availability. In the present study, we investigate individual variation in the foraging niche of the European badger (Meles meles), a social carnivore that lives in a shared group territory, but forages predominantly alone. Using stable isotope analysis, we distinguish the extent to which foraging variation in badgers is determined by social and spatial constraints and by individual differences within groups. We found a tendency for individual badgers within groups to differ markedly and consistently in their isotope values, suggesting that individuals living with access to the same resources occupied distinctive foraging niches. Although sex had a significant effect on isotope values, substantial variation within groups occurred independently of age and sex. Individual differences were consistent over a period of several months and in some instances were highly consistent across the two years of the study, suggesting long-term individual foraging specialisations. Individual specialisation in foraging may, therefore, persist in populations of territorial species not solely as a result of spatial variation in resources, but also arising from individuals selecting differently from the same available resources. Although the exact cause of this behaviour is unknown, we suggest that specialisation may occur due to learning trade-offs which may limit individual niche widths. However, ecological factors at the group level, such as competition, may also influence the degree of specialisation.  相似文献   

12.
J. Santamarina 《Hydrobiologia》1993,252(2):175-191
The food resource use of a stream in NW Spain by fish (Salmo trutta L. and Anguilla anguilla L.), birds (Cinclus cinclus L. and Motacilla cinerea L.) and mammals (Galemys pyrenaicus G. and Neomys anomalus C.) was studied. Data on seasonal diets and stream benthos prey were used to determine prey selection patterns.Caddisfly larvae are the main resource for Cinclus and Galemys, but these predators also consumed other benthic prey. Salmo fed on a wide range of benthic invertebrates, emergent pupae and terrestrial prey, whereas Anguilla consumed primarily benthic invertebrates, especially Lumbricids. Neomys fed mainly on terrestrial prey (Gasteropods and Lumbricids), but also consumed aquatic prey. Motacilla captured aquatic insects both in larval and aerial stages, as well as terrestrial prey.Both prey availability and selection led to seasonal differences in the use of food resources. All species showed a marked prey selection of aquatic taxa. Prey size plays an important role in this selection, most species consuming the largest of available prey sizes. In spite of the fact that all species feed upon freshwater invertebrates, substantial resource partitioning was observed in all seasons. This partitioning may be attributable to morpholological and physiological differences. Nevertheless, Anguilla and Galemys, two quite different animals, did feed on the same prey much of the time.  相似文献   

13.
Movement is the process by which individual organisms are displaced over time to eat, reproduce and defend resources. Fractal analysis is a technique used to study animal movement that measures spatial complexity of path tortuosity; here, we apply it to characterize the movement patterns of the Eurasian badger (Meles meles) in a Mediterranean landscape. We calculated path tortuosity overall and seasonally, and for individuals of different sexes and social groups. The influence of variables related to badgers’ resources (food, shelter, water), human infra-structures and weather conditions were analysed with respect to the tortuosity of each badger’s path. A total of 55 search paths from six badgers were considered for this study. Although badgers generally displayed convoluted movement, there were two exceptions: (a) males overall and (b) all badgers in summer; for both, movements had a lower fractal value, i.e. were less tortuous. The convoluted movement pattern generally observed is probably adapted to the clumped distribution of food in the study area. Nevertheless, our results suggest that the use of dens and latrines were the principal determinants of tortuosity of badgers’ paths while foraging.  相似文献   

14.
Predation and food consumption of five deep‐sea fish species living below 1000 m depth in the western Mediterranean Sea were analysed to identify the feeding patterns and food requirements of a deep‐sea fish assemblage. A feeding rhythm was observed for Risso's smooth‐head Alepocephalus rostratus, Mediterranean grenadier Coryphaenoides mediterraeus and Mediterranean codling Lepidion lepidion. Differences in the patterns of the prey consumed suggest that feeding rhythms at such depths are linked with prey availability. The diets of those predators with feeding rhythms are based principally on active‐swimmer prey, including pelagic prey known to perform vertical migrations. The diets of Günther's grenadier Coryphaenoides guentheri and smallmouth spiny eel Polyacanthonotus rissoanus, which did not show any rhythm in their feeding patterns, are based mainly on benthic prey. Food consumption estimates were low (<1% of body wet mass day?1). Pelagic feeding species showing diel feeding rhythms consumed more food than benthic feeding species with no feeding rhythms.  相似文献   

15.
Invertebrate food webs along a stream resource gradient   总被引:6,自引:0,他引:6  
1. The flow of energy through food webs with similar species can vary with both space and time. The river continuum concept (RCC) provides a useful framework for predicting variability in the biota and food availability along streams. We estimated the flow of organic matter (g m?2 year?1) through food webs, arrayed along a stream, that had different resource inputs. Four sites were sampled along the Little Tennessee River, North Carolina, U.S.A.: two fifth order sites, one sixth and one seventh order site. The dominant resource is leaf detritus in the upstream reach (the upstream fifth order site), algae in the mid‐reaches (the downstream fifth and sixth order sites), and suspended material downstream (seventh order site). 2. Eleven genera, contributing from 50 to 66% of the total macroinvertebrate secondary production of each site, were studied. We estimated organic matter flow from resource to consumer by combining previously measured rates of invertebrate secondary production with gut content analyses and assimilation efficiencies. 3. Organic matter flow through food webs increased in a downstream direction, while the structure of the food webs remained constant. The total food consumed by the taxa analysed increased from 34 g m?2 year?1 at the upstream site to 730 g m?2 year?1 at the most downstream site. We estimate that the organic matter consumed by the entire macroinvertebrate community ranged from 66 to 1164 g m?2 year?1. These results indicate that there is variation in the magnitude of organic matter flow through the food webs along this river continuum. 4. The dominant food resource consumed also changed along the gradient. Leaf detritus consumption decreased from 58% of the total consumption upstream to 6% downstream, whereas consumption of amorphous detritus increased from 18 to 64%. The proportion of animal material consumed also increased from 3 to 27%. The total consumption of autochthonous resources (diatoms and filamentous algae) increased along the continuum (from 6.41 to 34.05 g m?2 year?1). We conclude that these results are related to variation in resource availability, dietary shifts and invertebrate secondary production. These results link resource availability to energy flow, a relationship originally suggested by the RCC.  相似文献   

16.
Multichannel feeding, whereby consumers feed across resource channels such as upon herbivore and detritivore resources, acts to link discrete compartments of a food web with implications for ecosystem functioning and stability. Currently however, we have little understanding which feeding strategies of consumers underlie multichannel feeding. We therefore link spider functional group and resource density‐dependent or density‐independent feeding strategies to multichannel feeding by quantifying not only consumer diet, but also the relative availability of resources. Here we analysed herbivore (green) and detritivore (brown) prey use by spider communities in grasslands, and tested if available prey biomass proportions were linked to observed spider dietary proportions. Different spider functional groups each linked green and brown resource channels, but while green prey were always consumed in proportion to their relative biomass, brown prey were consumed independently of proportion by some functional groups. Additionally, we found greater intraguild predation by cursorial spiders when green resources were relatively scarcer, suggesting green prey was preferred, and needed to be compensated for when rare. Overall, we observed a stronger consumer connection to the green than brown resource channel, yet this green connection was more variable due to greater range in green resource availability across grasslands and density‐dependent consumption on green prey. Consequently, multichannel feeding by spiders was determined by density‐dependent and density‐independent feeding strategies that varied by spider functional group and across resources channels. Our results demonstrate that the role of multichannel feeding by spiders in linking separate food web compartments is a dynamic component of food web structure in these wild grasslands.  相似文献   

17.
Spatio‐temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic‐level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short‐term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.  相似文献   

18.
The stable isotope ratio and seasonal changes in diet of two indigenous (Oreochromis mossambicus, Tilapia rendalli) and one exotic (Oreochromis niloticus) tilapiine cichlids in the subtropical Limpopo River, South Africa were investigated to determine patterns of resource partitioning. Stomach contents of O. niloticus and O. mossambicus indicated high dietary overlap across size class, habitat and season, with both species primarily feeding on vegetative detritus. However, stable isotope analysis revealed that the two Oreochromis species had different stable isotope ratios derived from different food sources. The relatively δ13C-depleted O. niloticus indicates a phytoplankton-based diet, while the δ13C-enriched O. mossambicus indicates a macrophagous diet dominated by vegetative detritus and periphyton. The high similarity in stomach contents and the interspecific differences in isotopic composition reveal fine-scale patterns of food resource partitioning that could be achieved through selective feeding. Tilapia rendalli was largely macrophagous and fed mainly on aquatic macrophytes and had a low dietary overlap with both O. niloticus and O. mossambicus. In the Limpopo River, detritus and algae are probably the most abundant food resources and the causal factors responsible for the observed patterns of resource partitioning among the tilapiines are usually difficult to ascertain. Fish may be able to perceive food resources in terms of the dynamics that determine their availability. Detailed studies of variation in food resource availability and fish habitat use within the system are needed to evaluate this hypothesis.  相似文献   

19.
Most aspects of the ecology and behavior of Callicebus nigrifrons are still unknown. The information available about this species is mainly based on a few studies that also focused on other Callicebus. We examined the feeding behavior and activity pattern of a free-ranging pair of C. nigrifrons between March and November 2007 in an area of semideciduous tropical forest of southeastern Brazil. The study site is located at the southern limit of the Tropical Zone and is characterized by pronounced seasonality. As observed for other Callicebus monkeys, fruits were the most consumed food resource, accounting for 53% of the diet, which was complemented mainly by leaves (16%) but also by invertebrates and flowers (10% of each). A great variety of plant families (28) and species (62) were included in the diet. The titis spent 35% of their time feeding, distributing the remaining time between resting (30%) and traveling (24%). Data presented here indicate that C. nigrifrons prefer high-quality food items (fruit pulp), adding low-quality food items (such as leaves) as the availability of the higher-quality foods decreases. The amount of time spent traveling and resting did not change between seasons, but the time invested in feeding increased during the lean period. The activity pattern was not related to fruit availability, but in months with lower temperatures, monkeys spent more time feeding. We suggest that the feeding ecology and activity pattern of C. nigrifrons reflect adaptations related to annual fluctuations in food availability and temperature, respectively.  相似文献   

20.
The extent to which black‐backed jackals (Canis mesomelas) selectively consume domestic sheep (Ovis aries) compared to wild prey is unknown. Using faecal analysis and prey surveys, we determined the seasonal diet and prey selection of jackals on a small‐livestock farm in South Africa. Sheep comprised 25–48% of the biomass consumed by jackals across seasons, and consumption peaked during the lambing seasons, indicating sheep often were the main food resource for jackals. Another main food resource was wild ungulates <50 kg, primarily springbok (Antidorcas marsupialis) and steenbok (Raphicerus campestris), which comprised 8–47% of the biomass consumed. Other important food items were mammals 1–3 kg (4–16%), which included hares (Lepus spp.) and springhares (Pedetes capensis), and small rodents (10–14%). Compared to the biomass available, jackals selectively consumed mammals 1–3 kg over sheep across all seasons, whereas wild ungulates <50 kg were selectively consumed over sheep in most seasons. Our results showed that jackals selectively consumed different food items throughout the year and that wild prey were consistently selected over sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号