首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human calcitonin (hCT) is a C-terminus -amidated peptide hormone consisting of 32 amino acids. The amidated structure is essential for its biological activities, and the C-terminal-glycine-extended precursor peptide, hCT[G], is converted to bioactive hCT by a C-terminus--amidating enzyme. An efficient production method is described for the hCT[G] peptide, as a part of the fusion protein consisting of a modified E. coli -galactosidase, linker amino acids and hCT[G]. Stable inclusion bodies of the fusion protein in E. coli were expressed by focusing on the amino acid charge, and the fusion protein was modified by inserting a basic amino acid sequence into its linker region. This modification greatly affected the formation of inclusion bodies. E. coli strain W3110/pG97S4DhCT [G]R4 could produce a large amount of stable inclusion bodies, and the hCT[G] peptide was released quantitatively from the fusion protein by S. aureus V8 protease. This enabled a large-scale production method to be established for the hCT[G] precursor peptide in E. coli to produce mature hCT.  相似文献   

2.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

3.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

4.
Adult snails synthesize in their albumen glands a storage polysaccharide called galactan which is utilized by the developing embryos. With [6-3H]-uridine 5diphosphogalactose the incorporation of labelled d-galactose into the polysaccharide can be traeed in freshly removed glands maintained in a bathing buffer. After centrifugation of homogenized glands, galactosyltrasferase activity is only found in the insoluble fraction. Chaps extracts of this material retain almost all of their activity and can be used for comparison of the incorporation rates into different native galactans or in various oligosaccharides. A highly efficient -(16) galactosyltransferase was detected when methyl 3-O-(-d-galactopyranosyl)--d-galactopyranoside was offered as acceptor. The substitution at the penultimate residue resulted in a branched trisaccharide as demonstrated by 1H-NMR-spectroscopy and permethylation analysis of the reaction product. Comparable results were obtained with various oligosaccharides containing an internal galactose unit glycosidically linked 13. Attempts to separate and purify the various enzymes involved resulted in the isolation of a fraction which is able to transfer d-Gal exclusively to native galactan, but not to oligosaccharides. A further fraction was obtained from a different resin with activity for native galactan and 6-O-(-d-galactopyranosyl)-d-galactopyranose. but without any for methyl-3-O-(-d-galactopyranosyl)--d-galactopyranose. It is thus concluded that at least three different enzymes are involved in the biosynthesis of this snail galactan.Abbreviation Gal galactose - glc gas-liquid chromatography - Gro glycerol - tlc thin layer chromatography  相似文献   

5.
Summary Plasmid-coded -glucosidase produced byEscherichia coli was characterized and compared to the enzyme produced byCellulomonas flavigena. Cell-free extracts, non-denaturing PAGE and 5-bromo-4-chloro-3-indolyl--d-glucopyranoside (X-glu) as substrate were used to compare both enzymes. The -glucosidase was assayed for cellobiose andp-nitrophenyl-glucopyranoside (PNPG). Cellobiose hydrolysis was performed at 50°C for the enzyme fromC. flavigena and at 37°C for that fromE. coli pJS3, both with an optimal pH of 6.5. For PNPG hydrolysis, the optimal conditions were pH 5.5 and 37°C for both cell extracts. Most of the -glucosidase activity was intracellular. When cultures ofC. flavigena were grown with cellobiose or carboxymethylcellulose (CMC) as inducers, the expression of -glucosidase was increased considerably.E. coli pJS3 produces a cellobiase which hydrolyzes cellobiose and PNPG. TheK m values for cellobiose and PNPG indicated that the -glucosidase activity ofC. flavigena had a higher affinity for cellobiose as substrate, whereas the -glucosidase fromE. coli pJS3 showed higher affinity for PNPG.  相似文献   

6.
Summary Ampicillin was rapidly degraded by an extracellular -lactamase, and was therefore ineffective to isolate plasmid-harboring cells in the cultivation of recombinant E. coli for the production of thermostable d-hydantoinase. An effective way of preventing the degradation of ampicillin, methicillin was employed as a -lactamase inhibitor. A mixture of methicillin and ampicillin was observed to effectively function as a selective pressure, and consequently plasmid stability and enzyme productivity of recombinant E. coli were highly maintained.  相似文献   

7.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

8.
A DNA fragment coding for a carboxymethylcellulase (CMCase) ofFibrobacter succinogenes S85 was isolated from a pUC18 gene library inEscherichia coli JM109. The CMCase gene was present as a single copy in theF. succinogenes S85 genome and was found in all the otherF. succinogenes strains tested. The gene was expressed from an endogenous promoter inE. coli and was not subject to glucose repression. Most of the CMCase activity was located in the membrane ofE. coli. Zymogram analysis and35S labeling of the proteins encoded by the CMCase gene-containing plasmid indicated that the enzyme has a molecular mass of 58,000. The optimal pH and temperature of activity on CMC were respectively 6.4 and 30°C. The enzyme was active on CMC, barley -glucan, and lichenan but would not hydrolyze laminarin and exhibited no exoglucanase-type activity, suggesting that it is an endo-(1,4)--d-glucanase.  相似文献   

9.
An attempt is made to elucidate some of the more pronounced departures from traditional classifications in the book The families of the monocotyledons byDahlgren and collaborators, which embodies the latest opinions of the lateRolf Dahlgren on the subject. Consideration is given to the treatment of theLiliiflorae (especiallyLiliales andAsparagales) andBromeliiflorae, and to the theory offered for the origin of the monocots which identifies theDioscoreales as the most primitive order of the subclass.Dahlgren aimed at an eclectic classification (one based on a combination of similarity criteria and phylogenetic criteria) and the results of his use of cladistic methods (in association withF. N. Rasumssen) to supply the phylogenetic input are assessed. The resulting system itself is considered in the light of the distinction drawn byJ. S. L. Gilmour between natural and artificial classifications and their respective uses.Dedicated to the memory of JohnS. L. Gilmour.  相似文献   

10.
Summary Bacillus subtilis -amylase signal peptide, which consists of 33 amino acids, is functional in Escherichia coli cells.Lysine, glutamic acid, leucine, leucyl-leucine, or leucyl-leucyl-leucine was inserted between positions 28 and 29 of the -amylase signal peptide using site directed mutagenesis. DNAs encoding the wild-type and modified signal peptides were then fused in-frame to DNAs encoding the mature regions of the -lactamase of pBR322 and a thermostable -amylase. The secretion of -lactamase in E. coli cells was more inhibited by the modified signal peptides than that in B. subtilis cells, although the degree of inhibition varied and the inhibitory effect of each signal peptide was found to be similar in the two strains. In contrast, the difference in the inhibitory effect of each modified signal peptide was no longer detected in the case of the production of thermostable -amylase, except for the insertion of glutamic acid. Nearly 50% of thermostable -amylase in the precursor form was accumulated in the intracellular fraction of E. coli cells containing the DNAs for the modified signal peptides. The insertion of glutamic acid inhibited the secretion of the two enzymes in both B. subtilis and E. coli cells.  相似文献   

11.
Summary Two extracellular -glucosidases (EC 3.2.1.21) were isolated from Aspergillus niger USDB 0827 and A. niger USDB 0828, and their physical and kinetic properties studied. Both enzymes were very similar in terms of molecular size (230000 Da), pH optimum (pH 4.6), temperature optimum (65° C), stability at high temperatures and substrate preferences. They were capable of hydrolysing -linked disaccharides, phenyl -d-glucoside, p-nitrophenyl -d-glucoside (PNPG), o-nitrophenyl -d-glucoside, salicin and methyl -d-glucoside but lacked activity towards -linked disaccharides, a range of p-nitrophenyl monoglycosides and p-nitrophenyl diglycosides. Both -glucosidases were better at hydrolysing cellobiose than cellotriose, cellotetraose or cellopentaose. For both enzymes, glucose showed competitive inhibition with PNPG as substrate but had no effect with cellobiose. However, the two -glucosidases differed in inhibition by glucono-1,5-lactone and affinity for cellobiose. -Glucosidase from A. niger USDB 0827 also gave lower specific activity, and was more susceptible to metal ions (Ag+, Fe2+ and Fe3+) inhibition than that of A. niger USDB 0828. Correspondence to: Y. K. Hoh  相似文献   

12.
Polydedral inclusion bodies were isolated from exponentially grown cells of Nitrosomonas spec. The bodies contained d-ribulose, 1,5-bisphosphate carboxylase. The specific activity of the enzyme was 0.0122 mol CO2 fixed per min per mg of protein.  相似文献   

13.
Summary The pathogenFusarium solani sensuSnyder &Hansen, as identified byW. L. Gordon was recorded in the present work as a new species causing cotton wilt in Egypt. Cotton dust in varying concentrations does not significally alter the normal infection of both Menoufi and Giza 26 cotton varieties towardsFusarium. Similarly the potency ofFusarium filtrate to induce wilting did not appreciably change with previous treatment of cotton plants with cotton dust. On the other hand leaves treated with 2,4-D showed the maximal water loss. Percentage infected Giza 26 cotton seedlings were found to be comparatively less in soil infected with 2,4-D treatedFusarium mycelium than in that infected with untreated mycelium.  相似文献   

14.
Pseudomonas aeruginosa PA01 was found to utilise both thed- andl-isomers of -alanine and also -alanine as sole sources of carbon and energy for growth. Enzymological studies of wild-type cultures and comparison with mutants deficient in growth upon one or more isomers of alanine led to the following conclusions: (i) utilisation ofd-alanine involved its direct oxidation by an inducible, membrane-bound, cytochrome-linked dehydrogenase; (ii) utilisation ofl-alanine required its conversion to the directly oxidisabled-form by a soluble racemase; (iii) utilisation of -alanine, likel-alanine, involves both the racemase andd-alanine dehydrogenase enzymes, but in addition must involve other enzymes the identity, of which is still speculative; (iv)P. aeruginosa, likeEscherichia coli, appears to take upd-alanine andl-alanine by means of two specific permeases.Abbreviation DCPIP 2,6-dichlorophenol-indophenol  相似文献   

15.
The ability of wild-type strains ofVibrio vulnificus to utilize lactose as a sole source of carbon and energy and produce acid in lactose-containing media is associated with the appearance of spontaneous lactose-utilizing mutants. These contain increased activities of an enzyme able to hydrolyzeo-nitrophenyl--d-galactoside as well as lactose. This activity is constitutive in some mutants and inducible by both lactose and isopropyl--d-thiogalactoside in others. A limited survey of otherVibrio species indicates thatV. pelagius also can acquire, by mutation, the ability to grow on and make acid from lactose. No immunological cross-reaction was detected between the enzymes fromVibrio and the -galactosidases ofEscherichia coli andKlebsiella.  相似文献   

16.
Dye-linked l-proline dehydrogenase catalyzes the oxidation of l-proline in the presence of artificial electron acceptors such as 2, 6-dichloroindophenol and ferricyanide. The enzyme from the hyperthermophilic archaeon Thermococcus profundus was purified and characterized for the first time in archaea by Sakuraba et al. in 2001. In this study, cloning and sequencing analyses of the gene encoding the enzyme and functional analysis of the subunits were performed. The gene formed an operon that consisted of four genes, pdhA, pdhB, pdhF, and pdhX, which are tandemly arranged in the order of pdhA-F-X-B. SDS-PAGE analysis of the purified recombinant enzyme showed four different bands corresponding to (54 kDa), (43 kDa), (19 kDa), and (8 kDa) subunits encoded by pdhA, pdhB, pdhF, and pdhX, respectively, and the molecular ratio of these subunits was determined to be equal. This indicates that the enzyme consists of a heterotetrameric structure. Functional analysis of each subunit revealed that the subunit catalyzed the dye-linked l-proline dehydrogenase reaction by itself and that, unexpectedly, the subunit exhibited dye-linked NADH dehydrogenase activity. This is the first example showing the existence of a bifunctional dye-linked l-proline/NADH dehydrogenase complex. On the basis of genome analysis, similar gene clusters were observed in the genomes of Pyrococcus horikoshii, Pyrococcus abyssi, Pyrococcus furiosus, and Archaeoglobus fulgidus. These results indicate that the dye-linked l-proline dehydrogenase is a novel type of heterotetrameric amino acid dehydrogenase that might be widely distributed in the hyperthermophilic archaeal strain.Communicated by K. Horikoshi  相似文献   

17.
Summary Four different species and strains ofFusarium, namely,F. oxysporum f.vasinfectum (Atk.)Snyder &Hansen,F. solani (Mart.)App. &Wr.,F. vasinfectum (Atk.) f1 Wr. strainFahmy, andF. vasinfectum Atk. are responsible for cotton wilt in U.A.R. Pathogenicity experiments have shown that the four experimentalFusaria possess varying degrees of pathogenicity towards two susceptible cotton varieties, namely, Karnak and Bahtim 190. On the other hand, Ashmouni cotton proved resistant to the fourFusaria. Variability of pathogenicity of the experimentalFusaria is not only related to host cotton plant or parasite, but also to nitrogenous fertilizer or manurial treatment of the soil. Resistance of Ashmouni cotton was not broken in presence of sodium nitrate, ammonium nitrate or stable manure added to soil inoculated with any of the fourFusaria. The application of nitrogen fertilizers or manure resulted on the whole, in increased wilt-disease incidence of the susceptible cotton varieties. Stable manure enhanced predisposition to vascular-wilt more than other nitrogen treatments, especially in presence of the virulentF. oxysporum f.vasinfectum or both strains ofF. vasinfectum Atk. Ammonium nitrate induced the sudden appearance of mottling characteristic of vascular-wilt of cotton when Bahtim 190 plants were raised in nitrogen-fertilized soil inoculated withF. solani (Mart.)App. &Wr. At the same time, the raised affected plants showed increased growth-vigour and enhanced maturity of their leaves.  相似文献   

18.
The metabolic pattern of utilization of [1,2,3,4-14C, methyl-3H] -butyrobetaine and d-and l-[1-14C, methyl-3H]carnitine has been examined with variously grown resting cell suspensions of Acinetobacter calcoaceticus and Pseudomonas putida. Ps. putida grown on d, l-carnitine as the sole source of carbon, degraded only l-carnitine with stoichiometric accumulation of glycinebetaine. Alternatively, when grown on -butyrobetaine, Ps. putida rapidly metabolized -butyrobetaine, and to a lesser but significant extent, both d-and l-carnitine with equivalent formation of trimethylamine and degradation of the betaine carbon skeleton. Ac. calcoaceticus grown on either d,l-carnitine or -butyrobetaine, effectively utilized all three betaines at nearly the same rates. Disappearance of each of these quarternary ammonium compounds was accompanied by stoichiometric formation of trimethylamine and degradation of the carbon backbone. Utilization of the betaines and corresponding formation of trimethylamine by resting cell suspensions of appropriately grown Ac. calcoaceticus and Ps. putida, was essentially abolished under conditions of anaerobiosis and severely impaired in the presence of sodium cyanide, sodium azide, 2,4-dinitrophenol or 2,2-bipyridine. The results of the present investigations with resting cell suspensions of both Ac. calcoaceticus and Ps. putida do not support an earlier suggestion that -butyrobetaine degradation in these organisms proceeds by its prior hydroxylation to l-carnitine. Indeed, disrupted cell-free preparations of Ac. calcoaceticus and Ps. putida grown on either d,l-carnitine or -butyrobetaine showed no detectable -butyrobetaine hydroxylase activity.  相似文献   

19.
The thermophilic fungus Scytalidium thermophilum produced large amounts of periplasmic -D-xylosidase activity when grown on xylan as carbon source. The presence of glucose in the fresh culture medium drastically reduced the level of -D-xylosidase activity, while cycloheximide prevented induction of the enzyme by xylan. The mycelial -xylosidase induced by xylan was purified using a procedure that included heating at 50°C, ammonium sulfate fractioning (30–75%), and chromatography on Sephadex G-100 and DEAE-Sephadex A-50. The purified -D-xylosidase is a monomer with an estimated molecular mass of 45 kDa (SDS-PAGE) or 38 kDa (gel filtration). The enzyme is a neutral protein (pI 7.1), with a carbohydrate content of 12% and optima of temperature and pH of 60°C and 5.0, respectively. -D-Xylosidase activity is strongly stimulated and protected against heat inactivation by calcium ions. In the absence of substrate, the enzyme is stable for 1 h at 60°C and has half-lives of 11 and 30 min at 65°C in the absence or presence of calcium, respectively. The purified -D-xylosidase hydrolyzed p-nitrophenol--D-xylopyranoside and p-nitrophenol--D-glucopyranoside, exhibiting apparent Km and Vmax values of 1.3 mM, 88 mol min–1 protein–1 and 0.5 mM, 20 mol min–1 protein–1, respectively. The purified enzyme hydrolyzed xylobiose, xylotriose, and xylotetraose, and is therefore a true -D-xylosidase. Enzyme activity was completely insensitive to xylose, which inhibits most -xylosidases, at concentrations up to 200 mM. Its thermal stability and high xylose tolerance qualify this enzyme for industrial applications. The high tolerance of S. thermophilum -xylosidase to xylose inhibition is a positive characteristic that distinguishes this enzyme from all others described in the literature.  相似文献   

20.
Particulate membrane preparations isolated from cambial cells and differentiating and differentiated xylem cells of pine (Pinus sylvestris L.) trees synthesised [14C]glucans using either guanosine 5-diphosphate (GDP)-D-[U-14C]glucose or uridine 5-diphosphate (UDP)-D-[U-14C]glucose as glycosyl donors. Although these glucans had -(13) and -(14) linkages in an approximate ratio 1:1, the distribution of the linkages in the glucan synthesised from GDP-D-glucose was different from that synthesised from UDP-D-glucose. The synthesis of the mixed -(13) and -(14) glucan from GDP-D-[U-14C]glucose was changed to that of -(14) glucomannan in the presence of increasing concentrations of GDP-D-mannose. The glucan formed from UDP-D-[U-14C]glucose was not affected by any concentration of GDP-D-mannose. The membrane preparations epimerized GDP-D-glucose to GDP-D-mannose; however, the low amount of GDP-D-mannose formed was not incorporated into the polymer becaus the affinity of the synthase for GDP-D-glucose was much greater than that for GDP-D-mannose. The glucan formed from GDP-D-glucose and the glucomannan formed from GDP-D-glucose together with GDP-D-mannose were characterized. The apparent K m and V max of the glucan synthase for GDP-D-glucose were 6.38 M and 5.08 M·min-1, respectively. No lipid intermediates were detected during the synthesis of either glucan or glucomannan. The results indicated that an enzyme complex for the formation of the glucomannan was bound to the membrane.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography - UDP trridine 5-diphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号