首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio‐temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time‐isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time‐isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio‐temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.  相似文献   

2.
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non‐equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological–evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space‐for‐time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local‐scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non‐native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.  相似文献   

3.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

4.
The general dynamic model of oceanic island biogeography describes the evolution of species diversity properties, including species richness (SR), through time. We investigate the hypothesis that SR in organisms with high dispersal capacities is better predicted by island area and elevation (as a surrogate of habitat diversity) than by time elapsed since island emergence and geographic isolation. Linear mixed effect models (LMMs) subjected to information theoretic model selection were employed to describe moss and liverwort SR patterns from 67 oceanic islands across 12 archipelagos. Random effects, which are used to modulate model parameters to take differences among archipelagos into account, included only a random intercept in the best‐fit model for liverworts and in one of the two best‐fit models for mosses. In this case, the other coefficients are constant across archipelagos, and we interpret the intercept as a measure of the intrinsic carrying capacity of islands within each archipelago, independently of their size, age, elevation and geographic isolation. The contribution of area and elevation to the models was substantially higher than that of time, with the least contribution made by measures of geographic isolation. This reinforces the idea that oceanic barriers are not a major impediment for migration in bryophytes and, together with the almost complete absence of in situ insular diversification, explains the comparatively limited importance of time in the models. We hence suggest that time per se has little independent role in explaining bryophyte SR and principally features as a variable accounting for the changing area and topographic complexity during the life‐cycle of oceanic islands. Simple area models reflecting habitat availability and diversity might hence prevail over more complex temporal models reflecting in‐situ speciation and dispersal (time, geographic connectivity) in explaining patterns of biodiversity for exceptionally mobile organisms.  相似文献   

5.
海洋岛屿生物多样性保育研究进展   总被引:6,自引:0,他引:6  
海洋岛屿生态系统因具有明显的海域地理隔离而区别于陆地生态系统,被誉为生物地理与进化生态学研究的"天然实验室".陆地或其它邻近岛屿的种源物种迁移到新的岛屿后,经历地理隔离、特征置换或适应辐射等一系列的岛屿进化过程,形成与种源物种具有显著遗传差异的岛屿特有种.岛屿在小面积范围内分化形成大量的特有种,是岛屿生物多样性最为重要的特点之一.但是,岛屿种群由于分布范围局限、生境脆弱且种群规模较小,岛屿种群较陆地种群具有更高的灭绝风险.本文通过对海洋岛屿物种的起源与演化、遗传结构以及岛屿物种的濒危与保护3个热点问题的讨论,阐述岛屿生物多样性的形成机制、濒危肇因以及岛屿生物多样性保育的重要性.  相似文献   

6.
It has been proposed that established models and theories developed in classical ecology could be employed to greatly improve the optimization of wastewater treatment plants (WWTP) by placing the microbiological component onto a model-predictive basis. In particular, this could be achieved by better understanding bacterial community assembly and development. The species-area relationship is one of the oldest biological laws and has been used to describe spatial diversity patterns in contiguous habitats and on islands. In the current study, bacterial communities in seven membrane bioreactors (MBR), of increasing size, located across the UK were sampled. A significant linear relationship between bacterial taxa richness and reactor size was observed and was similar to classical species-area relationships of larger organisms colonizing oceanic islands. Rank-abundance plots revealed a gradient of greater evenness in community structure as MBR volume increased. Application of the Raup and Crick probability-based similarity index indicated a strong role for dispersal in MBR colonization and community structure. Our findings demonstrate that the MBR sampled behaved like islands with respect to bacterial colonization in accordance with the theory of island biogeography. In addition this study provides further evidence that biodiversity at the bacterial level is more similar to that of animals and plants than previously postulated.  相似文献   

7.
Is a new paradigm emerging for oceanic island biogeography?   总被引:4,自引:2,他引:4  
Following several decades during which two dissimilar and incompatible models (equilibrium and vicariance) dominated island biogeography, recent publications have documented patterns that point the way towards a new paradigm that includes elements of both models, as well as some novel aspects. Many of these seminal contributions have been made possible by the recent development of robust, temporally calibrated phylogenies used in concert with increasingly precise and reliable geological reconstructions of oceanic regions. Although a new general model of oceanic island biogeography has not yet been proposed, in this brief overview I present six hypotheses that summarize aspects of the emerging paradigm. These hypotheses deal with: the frequency of dispersal over oceanic water barriers by terrestrial organisms; the existence of substantial variation in the amount of dispersal (and gene flow) within a given set of related species within a given archipelago; the frequency, extent and impact on species richness of diversification within archipelagos; the frequent correlation of island age and the age of the species that live on the island; the long-term persistence of species on oceanic islands; and the occasional recolonization of continents by species from clades that diversified on islands. Identifying, testing, and seeking means of synthesizing these and other emerging hypotheses may allow a new conceptual paradigm to emerge.  相似文献   

8.
The general dynamic model (GDM) of oceanic island biogeography views oceanic islands predominantly as sinks rather than sources of dispersing lineages. To test this, we conducted a biogeographic analysis of a highly successful insular plant taxon, Cyrtandra, and inferred the directionality of dispersal and founder events throughout the four biogeographical units of the Indo-Australian Archipelago (IAA), namely Sunda, Wallacea,  Philippines, and Sahul. Sunda was recovered as the major source area, followed by Wallacea, a system of oceanic islands. The relatively high number of events originating from Wallacea is attributed to its central location in the IAA and its complex geological history selecting for increased dispersibility. We also tested if diversification dynamics in Cyrtandra follow predictions of adaptive radiation, which is the dominant process as per the GDM. Diversification dynamics of dispersing lineages of Cyrtandra in the Southeast Asian grade showed early bursts followed by a plateau, which is consistent with adaptive radiation. We did not detect signals of diversity-dependent diversification, and this is attributed to Southeast Asian cyrtandras occupying various niche spaces, evident by their wide morphological range in habit and floral characters. The Pacific clade, which arrived at the immaturity phase of the Pacific Islands, showed diversification dynamics predicted by the island immaturity speciation pulse model (IISP), wherein rates increase exponentially, and their morphological range is controlled by the least action effect favoring woodiness and fleshy fruits. Our study provides a first step toward a framework for investigating diversification dynamics as predicted by the GDM in highly successful insular taxa.  相似文献   

9.
A general dynamic theory of oceanic island biogeography   总被引:3,自引:2,他引:1  
Aim MacArthur and Wilson’s dynamic equilibrium model of island biogeography provides a powerful framework for understanding the ecological processes acting on insular populations. However, their model is known to be less successful when applied to systems and processes operating on evolutionary and geological timescales. Here, we present a general dynamic model (GDM) of oceanic island biogeography that aims to provide a general explanation of biodiversity patterns through describing the relationships between fundamental biogeographical processes – speciation, immigration, extinction – through time and in relation to island ontogeny. Location Analyses are presented for the Azores, Canaries, Galápagos, Marquesas and Hawaii. Methods We develop a theoretical argument from first principles using a series of graphical models to convey key properties and mechanisms involved in the GDM. Based on the premises (1) that emergent properties of island biotas are a function of rates of immigration, speciation and extinction, (2) that evolutionary dynamics predominate in large, remote islands, and (3) that oceanic islands are relatively short‐lived landmasses showing a characteristic humped trend in carrying capacity (via island area, topographic variation, etc.) over their life span, we derive a series of predictions concerning biotic properties of oceanic islands. We test a subset of these predictions using regression analyses based largely on data sets for native species and single‐island endemics (SIEs) for particular taxa from each archipelago, and using maximum island age estimates from the literature. The empirical analyses test the power of a simple model of diversity derived from the GDM: the log(Area) + Time + Time2 model (ATT2), relative to other simpler time and area models, using several diversity metrics. Results The ATT2 model provides a more satisfactory explanation than the alternative models evaluated (for example the standard diversity–area models) in that it fits a higher proportion of the data sets tested, although it is not always the most parsimonious solution. Main conclusions The theoretical model developed herein is based on the key dynamic biological processes (migration, speciation, extinction) combined with a simple but general representation of the life cycle of oceanic islands, providing a framework for explaining patterns of biodiversity, endemism and diversification on a range of oceanic archipelagos. The properties and predictions derived from the model are shown to be broadly supported (1) by the empirical analyses presented, and (2) with reference to previous phylogenetic, ecological and geological studies.  相似文献   

10.
The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands.  相似文献   

11.
A major aim of island biogeography has been to describe general patterns of species richness across islands and to identify the processes responsible. Data are often collected across many islands; with larger datasets providing increased statistical power and more accurate parameter estimates. However, there is often structure in observational data, violating an assumption of linear models that each datum is independent. In island biogeography this structure may take the form of an island, archipelago or taxon being represented by multiple data points. We survey recent papers in this field and find that these forms of non‐independence are a common feature. Most authors addressed this problem by conducting separate analyses for each archipelago, taxon or combination of the two, but a better tool for dealing with non‐independence and structure in data, the mixed model, already exists. We demonstrate the advantages of a mixed model approach by applying it to a well‐known dataset that spans 134 observations of single island endemic (SIE) richness across 39 islands, four archipelagos and four taxa. Taking island area and age into account, SIE richness varies substantially more among archipelagos than it does among islands or taxa. We find that SIE richness rises with island age on the Azores and Galapagos, while on the Canaries and Hawaii SIE richness initially rises with age but later declines on older islands. Our analyses demonstrate three advantages to island biogeography of applying a mixed modelling approach: 1) structure in the data is controlled for; 2) the variance among islands, archipelagos and taxa is estimated; 3) all the data can be included in a single model, making it possible to test whether trends are general across all archipelagos and taxa or are idiosyncratic.  相似文献   

12.
Several studies have shown that taxa with poor dispersal ability have a higher level of compositional dissimilarity than good dispersers. However, compositional dissimilarity patterns between islands with respect to dispersal ability of taxa have never been investigated before. In this study, we investigated compositional dissimilarity patterns of three taxonomic groups, namely amphibians, lizards, and snakes, differing in their dispersal abilities, in various insular systems around the world. We compiled presence–absence matrices, based on which we calculated several metacommunity indices to check for differences among taxonomic groups and island types (oceanic and continental shelf) using classical statistical tests and generalized linear mixed-effects models. According to our results, compositional dissimilarity was positively affected by the isolation of the insular system, in accordance to theory. In particular, oceanic systems were characterized by a high level of compositional dissimilarity between islands and subsequently by a low level of nestedness. SIEs may be generating these patterns causing distortions from expected levels of nestedness. Similar to our predictions, compositional dissimilarity patterns were also dependent on taxon-specific dispersal ability, with good dispersers showing lower levels of between-island compositional dissimilarity than poor dispersers in continental shelf systems. However, this pattern was not observed in oceanic systems. In conclusion, compositional dissimilarity in insular systems is dependent on both taxon and island type.  相似文献   

13.
Multiple overseas dispersal in amphibians   总被引:12,自引:0,他引:12  
Amphibians are thought to be unable to disperse over ocean barriers because they do not tolerate the osmotic stress of salt water. Their distribution patterns have therefore generally been explained by vicariance biogeography. Here, we present compelling evidence for overseas dispersal of frogs in the Indian Ocean region based on the discovery of two endemic species on Mayotte. This island belongs to the Comoro archipelago, which is entirely volcanic and surrounded by sea depths of more than 3500 m. This constitutes the first observation of endemic amphibians on oceanic islands that did not have any past physical contact to other land masses. The two species of frogs had previously been thought to be nonendemic and introduced from Madagascar, but clearly represent new species based on their morphological and genetic differentiation. They belong to the genera Mantidactylus and Boophis in the family Mantellidae that is otherwise restricted to Madagascar, and are distinguished by morphology and mitochondrial and nuclear DNA sequences from mantellid species occurring in Madagascar. This discovery permits us to update and test molecular clocks for frogs distributed in this region. The new calibrations are in agreement with previous rate estimates and indicate two further Cenozoic transmarine dispersal events that had previously been interpreted as vicariance: hyperoliid frogs from Africa to Madagascar (Heterixalus) and from Madagascar to the Seychelles islands (Tachycnemis). Our results provide the strongest evidence so far that overseas dispersal of amphibians exists and is no rare exception, although vicariance certainly retains much of its importance in explaining amphibian biogeography.  相似文献   

14.
As one of the basic theories of biodiversity conservation, island biogeography has been widely accepted in the past decades. Originally, island biogeography was put forward and applied in oceanic environments. But later on, it was found out that the application was not only limited to oceanic islands, but also in terrestrial environments with relatively isolated conditions. In terms of biodiversity level, island biogeography generally focuses on a small scale, such as species diversity and genetic diversity. The studies of biodiversity on a large-scale based on island biogeography, such as ecosystem and landscape scales, were seldomly conducted. Taking Poyang Lake, the largest fresh water lake in China as case study area, 30 grasslands were randomly selected to study whether island biogeography can be applied to grasslands at a landscape level from three island attributes (area, distance and shape), and the most important ecological variable (flooding) in Poyang Lake. The results showed that in general, grasslands have the property of an island, and follow the basic principle of island biogeography. We found the area and flooding duration were the two most important determinants of landscape diversity. There was a significant positive correlation between the grassland area and the landscape diversity, which could be well expressed by logarithmic function model (R2 = 0.73). There was a negative correlation between flooding duration and landscape diversity, which could be described by an inverse model (R2 = 0.206). The distance to mainland and the shape of grassland were correlated with landscape diversity, but the fitting result of the models was not as good as expected. The possible reason could be that Poyang Lake is a seasonal lake, the water level varies with hydrological conditions, so that the grasslands are not strongly isolated and their shape is not stable enough required by island biogeography. Furthermore, it indicates that besides area, distance and shape attributes, flooding strongly affects the biodiversity of grassland vegetation, and should not be ignored when applying island biogeography theory to Poyang Lake. This study is expected to be a supplement for island biogeography in terrestrial environments, and the results are expected to benefit for the biodiversity conservation in Poyang Lake.  相似文献   

15.
Glor RE 《Molecular ecology》2011,20(23):4823-4826
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.  相似文献   

16.
Sulawesi, the largest island in the Indonesian biodiversity hotspot region Wallacea, hosts a diverse endemic fauna whose origin has been debated for more than 150 years. We use a comparative approach based on dated phylogenies and geological constraints to test the role of vicariance versus dispersal in the origin of Sulawesi taxa. Most divergence time estimates for the split of Sulawesi lineages from their sister groups postdate relevant tectonic vicariant events, suggesting that the island was predominantly colonized by dispersal. Vicariance cannot be refuted for 20% of the analyzed taxa, though. Although vicariance across Wallace's Line was only supported for one arthropod taxon, divergence time estimates were consistent with a "tectonic dispersal" vicariance hypothesis from the East in three (invertebrate and vertebrate) taxa. Speciation on Sulawesi did not occur before the Miocene, which is consistent with geological evidence for more extensive land on the island from that time. The Pliocene onset of periodic sea-level changes may have played a role in increasing the potential for dispersal to Sulawesi. A more extensive taxon sampling in Wallacea will be crucial for refining our understanding of the region's biogeography and for testing hypotheses on the origin of taxa on its most important island.  相似文献   

17.
Geographical distributions of terrestrial or freshwater taxa that are broken up by oceans can be explained by either oceanic dispersal or vicariance in the form of fragmentation of a previously contiguous landmass. The validation of plate-tectonics theory provided a global vicariance mechanism and, along with cladistic arguments for the primacy of vicariance, helped create a view of oceanic dispersal as a rare phenomenon and an explanation of last resort. Here, I describe recent work that suggests that the importance of oceanic dispersal has been strongly underestimated. In particular, molecular dating of lineage divergences favors oceanic dispersal over tectonic vicariance as an explanation for disjunct distributions in a wide variety of taxa, from frogs to beetles to baobab trees. Other evidence, such as substantial gene flow among island populations of Anolis lizards, also indicates unexpectedly high frequencies of oceanic dispersal. The resurrection of oceanic dispersal is the most striking aspect of a major shift in historical biogeography toward a more even balance between vicariance and dispersal explanations. This new view implies that biotas are more dynamic and have more recent origins than had been thought previously. A high frequency of dispersal also suggests that a fundamental methodological assumption of many biogeographical studies--that vicariance is a priori a more probable explanation than dispersal--needs to be re-evaluated and perhaps discarded.  相似文献   

18.
Aim The biogeographical patterns and drivers of diversity on oceanic islands in the tropical South Pacific (TSP) are synthesized. We use published studies to determine present patterns of diversity on TSP islands, the likely sources of the biota on these islands and how the islands were colonized. We also investigate the effect of extinctions. Location We focus on oceanic islands in the TSP. Methods We review available literature and published molecular studies. Results Examples of typical island features (e.g. gigantism, flightlessness, gender dimorphism) are common, as are adaptive radiations. Diversity decreases with increasing isolation from mainland sources and with decreasing size and age of archipelagos, corresponding well with island biogeographical expectations. Molecular studies support New Guinea/Malesia, New Caledonia and Australia as major source areas for the Pacific biota. Numerous studies support dispersal‐based scenarios, either over several 100 km (long‐distance dispersal) or over shorter distances by island‐hopping (stepping stones) and transport by human means (hitch‐hiking). Only one vicariance explanation, the eastward drift of continental fragments (shuttles) that may have contributed biota to Fiji from New Caledonia, is supported by some geological evidence, although there is no evidence for the transport of taxa on shuttle fragments. Another vicariance explanation, the existence of a major continental landmass in the Pacific within the last 100 Myr (Atlantis theory), receives little support and appears unlikely. Extinction of lineages in source areas and persistence in the TSP has probably occurred many times and has resulted in misinterpretation of biogeographical data. Main conclusions Malesia has long been considered the major source region for the biota of oceanic islands in the TSP because of shared taxa and high species diversity. However, recent molecular studies have produced compelling support for New Caledonia and Australia as alternative important source areas. They also show dispersal events, and not vicariance, to have been the major contributors to the current biota of the TSP. Past extinction events can obscure interpretations of diversity patterns.  相似文献   

19.
We examined the species-area relationship for three historically distinct subsets of Lesser Antillean birds identified by molecular phylogenetic analysis of island and continental populations. The groups comprised recent colonists from continental or Greater Antillean source populations, old taxa having recently expanded distributions within the Lesser Antilles, and old endemic taxa lacking evidence of recent dispersal between islands. The number of young taxa was primarily related to distance from the source of colonists in South America. In a multiple regression, the logarithmic slope of the species-area relationship for this group was shallow (0.066+/-0.016). Old endemic taxa were restricted to islands with high elevation, and within this subset, species richness was related primarily to island area, with a steep slope (0.719+/-0.110). The number of recently spread endemic taxa was related primarily to island elevation, apparently reflecting the persistence of such populations on islands with large areas of forested and montane habitats. Historical analysis of the Lesser Antillean avifauna supports the dynamic concept of island biogeography of MacArthur and Wilson, rather than the more static view of David Lack, in that colonists exhibit dispersal limitation and extinction plays a role in shaping patterns of diversity. However, the avifauna of the Lesser Antilles is probably not in equilibrium at present, and the overall species-area relationship might reflect changing proportions of historically distinguishable subsets of species.  相似文献   

20.
The island biogeography of exotic bird species   总被引:1,自引:0,他引:1  
Aim   A recent upsurge of interest in the island biogeography of exotic species has followed from the argument that they may provide valuable information on the natural processes structuring island biotas. Here, we use data on the occurrence of exotic bird species across oceanic islands worldwide to demonstrate an alternative and previously untested hypothesis that these distributional patterns are a simple consequence of where humans have released such species, and hence of the number of species released.
Location   Islands around the world.
Methods   Statistical analysis of published information on the numbers of exotic bird species introduced to, and established on, islands around the world.
Results   Established exotic birds showed very similar species–area relationships to native species, but different species–isolation relationships. However, in both cases the relationship for established exotics simply mimicked that for the number of exotic bird species introduced. Exotic bird introductions scaled positively with human population size and island isolation, and islands that had seen more native species extinctions had had more exotic species released.
Main conclusion   The island biogeography of exotic birds is primarily a consequence of human, rather than natural, processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号