首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The OST48 subunit of the oligosaccharyltransferase complex is a type I membrane protein containing three lysines in its cytosolic domain. The two lysines in positions 3 and 5 from the C-terminus are able to direct protein localisation within the endoplasmic reticulum (ER) by COPI-mediated retrieval. Substitution of these lysines by arginine resulted in cell-surface expression of OST48, whereas ER residency was maintained when either Lys-5 or Lys-3 but not both was replaced with arginine. Localisation of OST48 was not affected by substitution of the two lysines by histidine, indicating that a His-Xaa-His sequence, in contrast to Arg-Xaa-Arg, contains ER-specific targeting information. These differences show that simple charge interactions are not sufficient for ER retention and that other structural factors also play a role. The His-Xaa-His sequence could represent a new and independent signal for directing ER localisation differing from both the arginine motif in type II proteins and the lysine motif in type I proteins. Our data do not exclude, however, that the histidine sequence simply mimics the lysine motif as a sorting signal, being recognised by and interacting with the same receptor subunit(s) in COP-I-coated vesicles. Conclusions arising from this assumption involving the conformation of lysine at the putative COP-I binding site and the failure of Arg-Xaa-Arg to mediate ER localisation for type I proteins are discussed.  相似文献   

2.
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.  相似文献   

3.
The Saccharomyces cerevisiae Wbp1 protein is an endoplasmic reticulum (ER), type I transmembrane protein which contains a cytoplasmic dilysine (KKXX) motif. This motif has previously been shown to direct Golgi-to-ER retrieval of type I membrane proteins in mammalian cells (Jackson, M. R., T. Nilsson, and P. A. Peterson. 1993. J. Cell Biol. 121: 317-333). To analyze the role of this motif in yeast, we constructed a SUC2-WBP1 chimera consisting of the coding sequence for the normally secreted glycoprotein invertase fused to the coding sequence of the COOH terminus (including the transmembrane domain and 16-amino acid cytoplasmic tail) of Wbplp. Carbohydrate analysis of the invertase-Wbp1 fusion protein using mannose linkage-specific antiserum demonstrated that the fusion protein was efficiently modified by the early Golgi initial alpha 1,6 mannosyltransferase (Och1p). Subcellular fractionation revealed that > 90% of the alpha 1,6 mannose-modified fusion protein colocalized with the ER (Wbp1p) and not with the Golgi Och1p-containing compartment or other membrane fractions. Amino acid changes within the dily sine motif (KK-->QK, KQ, or QQ) did not change the kinetics of initial alpha 1,6 mannose modification of the fusion protein but did dramatically increase the rate of modification by more distal Golgi (elongating alpha 1,6 and alpha 1,3) mannosyltransferases. These mutant fusion proteins were then delivered directly from a late Golgi compartment to the vacuole, where they were proteolytically cleaved in a PEP4-dependent manner. While amino acids surrounding the dilysine motif played only a minor role in retention ability, mutations that altered the position of the lysines relative to the COOH terminus of the fusion protein also yielded a dramatic defect in ER retention. Collectively, our results indicate that the KKXX motif does not simply retain proteins in the ER but rather directs their rapid retrieval from a novel, Och1p-containing early Golgi compartment. Similar to observations in mammalian cells, it is the presence of two lysine residues at the appropriate COOH-terminal position which represents the most important features of this sorting determinant.  相似文献   

4.
The selective breakdown of newly synthesized proteins retained within the endoplasmic reticulum (ER) is probably mediated by the specific recognition of structural features of protein substrates by components of a degradative system. Within the alpha chain of the multisubunit T-cell antigen receptor (TCR) complex, a transmembrane sequence containing two basic amino acid residues has been shown to act as a determinant for retention and rapid degradation in the ER. We now demonstrate that single basic or acidic amino acid residues can cause targeting for retention and degradation in the ER when placed within the transmembrane domain of an integral membrane protein normally destined for the cell surface. The effect of such potentially charged residues is dependent on their relative position within the transmembrane sequence and on the nature of the amino acid side chains. The phenotypic changes induced by potentially charged transmembrane residues occur without apparent alterations of the global folding or transmembrane topology of the mutant proteins. These observations test the hypothesis that potentially charged residues within transmembrane domains can provide the basis for a motif for ER degradation and explain the selective breakdown of some proteins retained within the ER.  相似文献   

5.
Cytoplasmic dilysine motifs on transmembrane proteins are captured by coatomer α‐COP and β′‐COP subunits and packaged into COPI‐coated vesicles for Golgi‐to‐ER retrieval. Numerous ER/Golgi proteins contain K(x)Kxx motifs, but the rules for their recognition are unclear. We present crystal structures of α‐COP and β′‐COP bound to a series of naturally occurring retrieval motifs—encompassing KKxx, KxKxx and non‐canonical RKxx and viral KxHxx sequences. Binding experiments show that α‐COP and β′‐COP have generally the same specificity for KKxx and KxKxx, but only β′‐COP recognizes the RKxx signal. Dilysine motif recognition involves lysine side‐chain interactions with two acidic patches. Surprisingly, however, KKxx and KxKxx motifs bind differently, with their lysine residues transposed at the binding patches. We derive rules for retrieval motif recognition from key structural features: the reversed binding modes, the recognition of the C‐terminal carboxylate group which enforces lysine positional context, and the tolerance of the acidic patches for non‐lysine residues.  相似文献   

6.
T Nilsson  M Jackson  P A Peterson 《Cell》1989,58(4):707-718
The adenoviral transmembrane E3/19K glycoprotein is a resident of the endoplasmic reticulum. Here we show that the last six amino acid residues of the 15-membered cytoplasmic tail are necessary and sufficient for the ER retention. These residues can be transplanted onto the cytoplasmic tail of other membrane-bound proteins such that ER residency is conferred. Deletion analysis demonstrated that no single amino acid residue is responsible for the retention. The identified structural motif must occupy the extreme COOH-terminal position to be functional. An endogenous transmembrane ER protein, UDP-glucuronosyltransferase, also contains a retention signal in its cytoplasmic tail. We suggest that short linear sequences occupying the extreme COOH-terminal position of transmembrane ER proteins serve as retention signals.  相似文献   

7.
Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids   总被引:1,自引:0,他引:1  
Any protein synthesized in the secretory pathway has the potential to misfold and would need to be recognized and ubiquitylated for degradation. This is astounding, since only a few ERAD-specific E3 ligases have been identified. To begin to understand substrate recognition, we wished to map the ubiquitylation sites on the NS-1 nonsecreted immunoglobulin light chain, which is an ERAD substrate. Ubiquitin is usually attached to lysine residues and less frequently to the N terminus of proteins. In addition, several viral E3s have been identified that attach ubiquitin to cysteine or serine/threonine residues. Mutation of lysines, serines, and threonines in the NS-1 variable region was necessary to significantly reduce ubiquitylation and stabilize the protein. The Hrd1 E3 ligase was required to modify all three amino acids. Our studies argue that ubiquitylation of ER proteins relies on very different mechanisms of recognition and modification than those used to regulate biological processes.  相似文献   

8.
J E Jentoft  R Rayford 《Biochemistry》1989,28(8):3250-3257
The Fc fragment of a human monoclonal IgG1 was compared with subfragments containing (a) the intact CH2 domain (CH2 fragment) or (b) the intact CH3 domain (pFc' and tFc' fragments). All fragments were reductively 13C-methylated and their resulting dimethyllysyl resonances characterized in 0.1 M KC1 as a function of pH by 13C NMR spectroscopy. Seven resonances were characterized for the 18 lysine residues of the Fc fragment, eight for the 12 lysines of the CH2 fragment, and five each for the 18 lysine residues of the Fc fragment, eight for the 12 lysines of the CH2 fragment, and five each for the 9 lysines of the pFc' and the 6 lysines of the tFc' fragments, respectively. The multiplicity of resonances indicates that the lysine residues in each fragment exist in a variety of microenvironments and that the fragments are all highly structured. The correspondence between 6 of the 12 or 13 perturbed lysine residues in the Fc fragment and the smaller subfragments indicates that the conformation of the CH2 and CH3 domains is largely unchanged in the smaller fragments. However, in addition to three lysines at the CH2-CH3 domain interface, whose environments were known to be disrupted in the smaller fragments, three or four lysine residues have somewhat different properties in the Fc fragment and in the subfragments, indicating that some local perturbations are induced in the domain structure in the subfragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Retrieval of transmembrane proteins to the endoplasmic reticulum   总被引:52,自引:24,他引:28       下载免费PDF全文
A COOH-terminal double lysine motif maintains type I transmembrane proteins in the ER. Proteins tagged with this motif, eg., CD8/E19 and CD4/E19, rapidly receive post-translational modifications characteristic of the intermediate compartment and partially colocalized to this organelle. These proteins also received modifications characteristic of the Golgi but much more slowly. Lectin staining localized these Golgi modified proteins to ER indicating that this motif is a retrieval signal. Differences in the subcellular distribution and rate of post-translational modification of CD8 maintained in the ER by sequences derived from a variety of ER resident proteins suggested that the efficiency of retrieval was dependent on the sequence context of the double lysine motif and that retrieval may be initiated from multiple positions along the exocytotic pathway.  相似文献   

10.
The studies reported are concerned with the functional consequences of the chemical modifications of the lysines and carboxyl-containing amino acids of bovine rhodopsin. The 10 non-active-site lysine residues of rhodopsin can be completely dimethylated and partially acetimidated (8-9 residues) with no loss in the ability of the proteins to activate the G protein when photolyzed or to regenerate with 11-cis-retinal. These modifications do not alter the net charge on the protein. Surprisingly, heavy acetylation of these lysines (eight to nine residues) with acetic anhydride, which neutralizes the positive charges of the lysine residues, yields a modified rhodopsin fully capable of activating the G protein and being regenerated. It is concluded that the non-active-site lysine residues of rhodopsin are not importantly and directly involved in interactions with the G protein during photolysis. However, this is not to say that they are unimportant in maintaining the tertiary structure of the protein because heavy modification of these residues by succinylation and trinitrophenylation produces proteins incapable of G protein activation, although the succinylated protein still regenerated. The active-site lysine of rhodopsin was readily modified and prevented from regenerating with 11-cis-retinal and with o-salicylaldehyde and o-phthalaldehyde/mercaptoethanol, two sterically similar aromatic aldehyde containing reagents which react by entirely different mechanisms. It is suggested that rhodopsin contains an aromatic binding site within its active-site region. Monoethylation, but not monomethylation, of the active-site lysine also prevented regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Deeks ED  Cook JP  Day PJ  Smith DC  Roberts LM  Lord JM 《Biochemistry》2002,41(10):3405-3413
Several protein toxins, including the A chain of ricin (RTA), enter mammalian cells by endocytosis and subsequently reach their cytosolic substrates by translocation across the endoplasmic reticulum (ER) membrane. To achieve this export, such toxins exploit the ER-associated protein degradation (ERAD) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates. Toxins that translocate from the ER have an unusually low lysine content. Since lysyl residues are potential ubiquitination sites, it has been proposed that this paucity of lysines reduces the chance of ubiquitination and subsequent ubiquitin-mediated proteasomal degradation [Hazes, B., and Read, R. J. (1997) Biochemistry 36, 11051-11054]. Here we provide experimental support for this hypothesis. The two lysyl residues within RTA were changed to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect, suggesting that the endogenous lysyl residues are not the usual sites for ubiquitin attachment. However, when four additional lysines were introduced into RTA in a way that did not compromise the activity, structure, or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasome inhibitor clasto-lactacystin beta-lactone increased the cytotoxicity of the lysine-rich RTA to a level approaching that of wild-type ricin. The introduction of four additional lysyl residues into a second ribosome-inactivating protein, abrin A chain, also dramatically decreased the cytotoxicity of the holotoxin compared to wild-type abrin. This effect could also be reversed by proteasomal inhibition. Our data support the hypothesis that the evolution of a low lysine content is a degradation-avoidance strategy for toxins that retrotranslocate from the ER.  相似文献   

12.
Pig liver oligosaccharyltransferase (OST) is a heterooligomeric protein complex responsible for the co-translational transfer of GlcNAc2-Man9-Glc3 from Dol-PP onto specific asparagine residues in the nascent polypeptide. OST48, one of the catalytic subunits in this complex, exerts a typical type I membrane topology, containing a large luminal domain, a hydrophobic transmembrane domain and a short cytosolic peptide tail. Because OST48 is found within the endoplasmic reticulum (ER) when overexpressed in COS-1 cells, we carried out experiments to identify structural signals potentially capable of directing ER-targeting, using OST48 mutants and hybrid proteins consisting of individual OST48 domains and Man9-mannosidase. Immunofluorescence microscopy showed that OST48 mutants in which the C-terminal lysine-3 or lysine-5, but not lysine-7, had been replaced by leucine (OST48AK) could be detected on the cell surface. This indicates that these two lysine residues are sufficient for conferring ER-residency on OST48. The double-lysine motif operates only when exposed cytosolically, where it acts as a relocation signal rather than causing retention. OST48AK-3, when co-expressed in COS-1 cells together with myc-tagged ribophorin 1, was quantitatively retained in the ER. By contrast, co-expression in the presence of ribophorin I resulted in no reduction of cell surface fluorescence for the OMOdeltaK-5 chimera containing the cytosolic and transmembrane domain of OST48 attached to the C-terminus of the Man9-mannosidase luminal domain. Thus ER-localisation of OST48 is probably brought about by complex formation with ribophorin I and this most likely involves the luminal domains of both proteins. Consequently, the double-lysine motif in the cytosolic domain of OST48 is unlikely to have a primary function except being involved in re-capture of molecules which have escaped from the ER.  相似文献   

13.
The relative reactivities of lysine residues of tropomyosin complexed with troponin have been measured in order to locate the binding site of troponin on tropomyosin in a complex between the two native proteins. The lysines were labeled with acetic anhydride using a competitive labeling procedure and the relative reactivities of tropomyosin lysine containing peptides were compared to those from tropomyosin labeled in the absence of troponin (S. E. Hitchcock-DeGregori, S. F. Lewis, and T. M.-T. Chou, (1985) Biochemistry 24, 3305-3314). Analysis of about two-thirds of the lysines indicates that troponin affects the reactivities of lysines along the length of the tropomyosin, indicating long-range effects. The inferred binding site is more extensive than previously reported, about 25 nm, extending from res. 136 to the carboxy-terminus and to res. 30 beyond the end-to-end overlap in the amino-terminal region of the next tropomyosin molecule.  相似文献   

14.
Generally, halophilic enzymes present a characteristic amino acid composition, showing an increase in the content of acidic residues and a decrease in the content of basic residues, particularly lysines. The latter decrease appears to be responsible for a reduction in the proportion of solvent-exposed hydrophobic surface. This role was investigated by site-directed mutagenesis of glucose dehydrogenase from Haloferax mediterranei, in which surface aspartic residues were changed to lysine residues. From the biochemical analysis of the mutant proteins, it is concluded that the replacement of the aspartic residues by lysines results in slightly less halotolerant proteins, although they retain the same enzymatic activities and kinetic parameters compared to the wild type enzyme.  相似文献   

15.
Dilysine signals confer localization of type I membrane proteins to the endoplasmic reticulum (ER). According to the prevailing model these signals target proteins to the ER by COP I-mediated retrieval from post-ER compartments, whereas the actual retention mechanism in the ER is unknown. We expressed chimeric membrane proteins with a C-terminal -Lys-Lys-Ala-Ala (KKAA) or -Lys-Lys-Phe-Phe (KKFF) dilysine signal in Lec-1 cells. Unlike KKFF constructs, which had access to post-ER compartments, the KKAA chimeras were localized to the ER by confocal microscopy and were neither processed by cis-Golgi-specific enzymes in vivo nor included into ER-derived transport vesicles in an in vitro budding assay, suggesting that KKAA-bearing proteins are permanently retained in the ER. The ER localization was nonsaturable and exclusively mediated by the dilysine signal because mutating the lysines to alanines led to cell surface expression of the chimeras. Although the KKAA signal avidly binds COP I in vitro, the ER retention by this signal does not depend on intact COP I in vivo because it was not affected in an epsilon-COP-deficient cell line. We propose that dilysine ER targeting signals can mediate ER retention in addition to retrieval.  相似文献   

16.
The localization of soluble endoplasmic reticulum (ER) chaperones in the cell organelle is mediated by the C‐terminal KDEL (lysine, aspartic acid, glutamic acid and leucine) motif. This motif is recognized by the KDEL receptor, a seven‐transmembrane protein that cycles between the ER and cis‐Golgi to capture missorted KDEL chaperones from post‐ER compartments in a pH‐dependent manner. The KDEL receptor's target chaperones have a substantial role in protein folding and assembly. In this study, the gene expression level of KDEL receptor 1 shows a moderate upregulation during either ER stress or growth of Chinese hamster ovary (CHO) cells in batch culture, while the ER chaperones show higher upregulation. This might indicate the possibility of saturation of the ER retention machinery or at least hindered retention during late stage batch culture in recombinant CHO cells. KDELR1 is overexpressed in a monoclonal antibody‐producing CHO cell line to improve the intracellular chaperone retention rate in the ER. An increase in the specific productivity of IgG1 by 13.2% during the exponential phase, and 23.8% in the deceleration phase of batch culture is observed. This is the first study to focus on the ER retention system as a cell engineering target for enhancing recombinant protein production.  相似文献   

17.
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.  相似文献   

18.
The CD3-epsilon endoplasmic reticulum (ER) retention motif has been characterized by mutagenesis and NMR spectroscopy. Tyr177, Leu180 and Arg183 are involved in ER retention. The motif forms an elongated alpha-helix in which the tyrosine and leucine residues are closely apposed, followed by a beta I' turn that places Arg183 in the vicinity of Leu180. The structure formed by Tyr177 and the leucine in position +3 is reminiscent of the beta-turn structure adopted by tyrosine-containing endocytosis signals. Moreover, substitution of the transferrin receptor (TfR) internalization sequence by the CD3-epsilon motif still allowed the rapid internalization of the TfR and, conversely, the chimeric protein resulting from the substitution of the CD3-epsilon motif by the endocytosis signal of the low density lipoprotein receptor was ER located. These data support the idea of a functional homology between the two types of signal.  相似文献   

19.
20.
The second step in glycosylphosphatidylinositol biosynthesis is the de-N-acetylation of N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) catalyzed by N-acetylglucosaminylphosphatidylinositol deacetylase (PIG-L). Previous studies of mouse thymoma cells showed that GlcNAc-PI de-N-acetylase activity is localized to the endoplasmic reticulum (ER) but enriched in a mitochondria-associated ER membrane (MAM) domain. Because PIG-L has no readily identifiable ER sorting determinants, we were interested in learning how PIG-L is localized to the ER and possibly enriched in MAM. We used HeLa cells transiently or stably expressing epitope-tagged PIG-L variants or chimeric constructs composed of elements of PIG-L fused to Tac antigen, a cell surface protein. We first analyzed the subcellular distribution of PIG-L and Glc-NAc-PI-de-N-acetylase activity and then studied the localization of Tac-PIG-L chimeras to identify sequence elements in PIG-L responsible for its subcellular localization. We show that human PIG-L is a type I membrane protein with a large cytoplasmic domain and that, unlike the result with mouse thymoma cells, both PIG-L and GlcNAc-PI-de-N-acetylase activity are uniformly distributed between ER and MAM in HeLa cells. Analyses of a series of Tac-PIG-L chimeras indicated that PIG-L contains two ER localization signals, an independent retention signal located between residues 60 and 88 of its cytoplasmic domain and another weak signal in the luminal and transmembrane domains that functions autonomously in the presence of membrane proximal residues of the cytoplasmic domain that themselves lack any retention information. We conclude that PIG-L, like a number of other ER membrane proteins, is retained in the ER through a multi-component localization signal rather than a discrete sorting motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号