首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用精密微热量计(LKB2277 生物活性检测系统) 和差示扫描量热(differential scanning calorimetry, DSC) 仪(Dupont910) 分别测定了广丛41B 水稻线粒体体外能量释放热谱和DSC 曲线。探讨了它在恒温和变温条件下能量释放的规律和特性,建立了广丛41B水稻线粒体在不同条件下能量释放的动力学模型,计算了它在能量释放过程中的热力学和动力学参数,并比较了它们之间的差异。结果表明,温度愈低,线粒体能量释放速率愈慢。线粒体在零上低温下放置较长时间后,其放热量增加,能量释放速率加快。  相似文献   

2.
水稻线粒体DNA的提取与分析   总被引:8,自引:0,他引:8  
为了研究水稻细胞质雄性不育的分子基础,我们比较了各种提取线粒体DNA(mtDNA)的方法,并提出了一些改进措施。以丛广41A、丛广41B和杂种一代广优青为材料,对所提取的材料mtD-NA进行了紫外扫描、OD值测定、电泳、酶切等分析,结果表明,以新鲜材料进行不连续蔗糖密度梯度超速离心对提取高纯度的线粒体DNA效果较好。  相似文献   

3.
采用连续流动浸提的方法,研究了酒石酸和草酸对不同含钾矿物(黑云母、白云母和微斜长石)钾释放及动力学模型的影响。结果表明:酒石酸连续流动浸提条件下,黑云母、白云母和微斜长石的释钾量分别是对照处理(去离子水)各矿物释钾量的2.2、3.3和2.6倍;草酸浸提条件下,黑云母、白云母和微斜长石的释钾量分别是对照处理的2.7、4.5和10.1倍;不同溶液连续流动浸提条件下,各矿物的释钾量均表现为黑云母﹥白云母﹥微斜长石;分别采用抛物线扩散模型、双常数模型、Elovich模型和一级动力学模型对不同矿物中钾的释放量进行方程拟合,结果表明,4种模型模拟条件下黑云母、白云母的钾释放动力学方程均达到了极显著的水平,决定系数R2介于0.591~0.999;一级动力学模型模拟下微斜长石钾释放的动力学方程达到了极显著水平。连续流动条件下,低分子量有机酸可显著提高不同含钾矿物的钾素释放量。  相似文献   

4.
棕色脂肪组织(BAT)的生理作用与白色脂肪显著不同,它以产热的形式释放能量而不是将能量以ATP的形式储存.线粒体是在能量代谢和维持细胞稳态中具有重要功能的细胞器.为了更好地了解棕色脂肪中的能量代谢过程,运用双向电泳及质谱相结合的技术,分离了大鼠白色和棕色脂肪线粒体,对其差异蛋白质谱进行了系统分析和鉴定.参与脂肪和氨基酸代谢、三羧酸循环及线粒体呼吸链的蛋白质在棕色脂肪线粒体中的表达明显高于白色脂肪线粒体,在寒冷诱导下这些蛋白质的表达进一步上调.此外,参与辅酶Q合成的一系列COQ 基因在棕色脂肪中经寒冷适应后表达明显上调.该研究表明,辅 酶Q合成的增高在非颤栗性产热中具有重要作用,为进一步了解棕色脂肪特异性的能量代谢提供了新的思路.  相似文献   

5.
线粒体动力学与细胞凋亡   总被引:1,自引:0,他引:1  
线粒体是普遍存在于真核细胞中的双层膜细胞器,通过氧化磷酸化为细胞提供能量。线粒体是高度动态的细胞器,通过持续的融合和分裂改变自身形态来适应各种应激条件以满足细胞的能量代谢及其他生物学需求,这种生物学过程被称为线粒体动力学。细胞凋亡是细胞程序性的死亡方式,而线粒体在内源性细胞凋亡途径中扮演着重要的角色。在受到细胞内部(DNA突变)或者外部刺激时,线粒体外膜通透性改变并释放凋亡因子,如细胞色素C、Smac、AIF等,进而激活细胞凋亡信号通路,促进细胞凋亡。细胞凋亡过程中线粒体形态发生改变,可从管状向颗粒状转变,并伴随着线粒体嵴重构。线粒体形态是由Mfn1、Mfn2、OPA1、Drp1等多种GTP蛋白调控,这些蛋白同时也参与细胞凋亡调控。此外,细胞凋亡调控蛋白如Bax、Bak、Bcl-2等蛋白也可调控线粒体形态。该文主要回顾和阐述细胞凋亡与线粒体动力学的发展历程、基本知识以及它们之间的内在联系。  相似文献   

6.
细胞色素c与细胞凋亡   总被引:9,自引:0,他引:9  
Huang JF  Fang DC  Lu R 《生理科学进展》1999,30(2):144-146
在哺乳动物细胞凋亡的发生过程中,位于线粒体内膜外侧的细胞色素c被释放进入胞质,作为辅助因子参与死亡蛋白酶-3的激活,后者在凋亡过程中起到重要作用。Bcl-2、Bcl-XL,Bax可阻止或诱导线粒体细胞色素c释放入胞质,这可能是Bcl-2,Bcl-XL,Bax调节凋亡的机制之一。  相似文献   

7.
线粒体是哺乳动物细胞内重要细胞器,通过生物合成、分裂/融合及线粒体自噬过程之间的平衡来维持线粒体质量,其功能异常将导致多种疾病的发生。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是感受细胞能量变化的关键分子,细胞能量胁迫条件下激活AMPK调控了线粒体的功能,并影响细胞能量代谢和机体的健康,提示AMPK是调控线粒体质量的重要因子。基于此,该文综述了AMPK的结构和激活因素,围绕线粒体生物合成、分裂/融合的动力学和自噬讨论AMPK对哺乳动物细胞线粒体质量的调控作用,为通过激活AMPK而调控线粒体质量,从而为维持机体健康、降低疾病发生提供理论依据。  相似文献   

8.
线粒体是多细胞生物的一个重要组成部分,它对细胞以及机体的健康具有十分重要的作用。线粒体可以产生能量,介导钙和活性氧信号转导,甚至调控细胞凋亡。近年来研究显示,线粒体在细胞中处于不断分裂与融合的状态,并且可以在细胞内重新分布,线粒体的这种特性统称为线粒体动力学。线粒体动力学对维持线粒体各种功能极其重要,成为了近年来的研究热点。本文重点综述了哺乳动物细胞内线粒体分裂和融合相关蛋白质的结构以及生物学功能。  相似文献   

9.
南苜蓿组织和原生质体培养及转化试验   总被引:2,自引:0,他引:2  
主要探讨南苜宿子叶和下胚轴外植体,子叶原生岳体培养中的器官发生及遗传转化。南苜蓿子叶和下胚细外植体培养在附加1AA0.5-1mg/L和细胞分裂素(BA或ZT)0.5-2mg/L的MS培养基上,在有当照的条件下诱导形成不定芽,进而再生成完整植株。子叶原生质体培养在附加2,4-D0.5mg/L和KT0.2mg/L的B5液体培养基中,细胞分裂频率可达30-41%,原生质全来源的愈伤组织在MSB培养基(M  相似文献   

10.
线粒体Ca~(2 )转运与细胞代谢调节   总被引:2,自引:0,他引:2  
线粒体具有一套完整的Ca2 转运系统 ,包括两条摄取途径和三条释放途径。生理条件下 ,它们在细胞胞质与线粒体钙稳态维持以及细胞能量代谢中起重要作用 ,线粒体从胞质摄取的Ca2 可激活某些Ca2 敏感的呼吸酶和代谢过程。病理条件下 ,线粒体Ca2 转运发生紊乱 ,通过线粒体通透性转换导致细胞坏死或凋亡  相似文献   

11.
线粒体动力学主要涉及线粒体融合、分裂及自噬,在维持细胞生理机能和稳态中发挥重要作用。线粒体是人体能量工厂,因此其融合、分裂及自噬的变化对细胞呼吸及能量的合成供给有重要意义,另一方面细胞能量代谢变化反过来也影响线粒体动力学。本文对调节线粒体融合、分裂及自噬的相关蛋白与能量代谢关系的研究进展进行综述,重点分析运动干预下线粒体动力学与电子链复合物表达、氧化磷酸化、ATP合成的关系,为运动训练及疾病干预研究提供参考。  相似文献   

12.
在肝部分切除或创伤后,残存肝组织很快就进入复杂的再生过程。在肝再生过程中,线粒体发挥着重要的作用,不仅提供能量,而且参与细胞的信号转导等活动。近年来众多研究表明,在肝再生过程中线粒体透性转换有明显特征性的变化,并具有一定的规律性;同时发现,在肝再生早期有一些线粒体基质蛋白释放到胞液中,提示线粒体蛋白的释放可能与肝再生之间具有一定的关系。  相似文献   

13.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

14.
细胞器与细胞凋亡   总被引:3,自引:0,他引:3  
闫玲  苗琦 《生物物理学报》2002,18(3):271-276
细胞凋亡是由基因控制的有序生理过程,细胞内各组分在这一过程中相互协调,组成了精细的调控系统。除细胞核外,线粒体是近年发现与凋亡密切相关的细胞器,它经多种因子诱发可以释放细胞色素c等因子参与到凋亡途径中。进一步的研究发现,在一定条件下,内质网、溶酶体等也与凋亡活动有关。这些细胞器在细胞凋亡中的作用及其机制是目前的研究热点。  相似文献   

15.
线粒体Ca^2+转运与细胞代谢调节   总被引:4,自引:0,他引:4  
线粒体具有一套完整的Ca^2+转运系统,包括两条摄取途径和三条释放途径。生理条件下,它们在细胞胞质与线粒体钙稳态维持以及细胞能量代谢中起重要作用,线粒体从胞质摄取的Ca^2+可激活某些Ca^2+敏感的呼吸酶和代谢过程。病理条件下,线粒体Ca^2+转运发生紊乱,通过线粒体通透性转换导致细胞坏死或凋亡。  相似文献   

16.
郑仕桥  夏志  尚画雨 《生命科学》2023,(8):1071-1079
线粒体作为细胞的能量中心,在细胞内呈现高度的动态变化,其数量、质量及功能的稳定对维持细胞的正常活动至关重要。线粒体动力学与线粒体自噬之间可互相调控,共同构成线粒体质量控制的重要环节。泛素特异性蛋白酶30 (USP30)作为去泛素化酶,既可通过线粒体融合蛋白1/2 (Mfn1/2)、线粒体动力蛋白相关蛋白1 (Drp1)等融合与分裂蛋白参与调控线粒体动力学过程,还能通过E3泛素连接酶Parkin、泛素(Ub)及电压依赖性阴离子通道1 (VDAC1)等多种信号而调控PTEN诱导激酶1 (PINK1)/Parkin途径介导的线粒体自噬,但其详细机制尚未完全阐明。本文对USP30在调控线粒体动力学和线粒体自噬中的作用与其机制进行了综述。  相似文献   

17.
细胞凋亡是机体维持组织稳态和胚胎发育的重要机制之一,受到多种信号分子的严格调控。促凋亡Bcl-2家族蛋白成员Bax和Bak蛋白在细胞凋亡中扮演着非常重要的角色。在凋亡信号的刺激下,Bax和Bak蛋白被激活并在线粒体上互相凝集成簇,使得线粒体膜的通透性增加,引起凋亡因子的释放,并最终诱导细胞的死亡。本文主要介绍Bax和Bak蛋白在细胞凋亡过程中的调控与激活机制,并详细阐述目前它们在线粒体凋亡通路中的几个激活模型,总结二者在激活线粒体凋亡通路中的作用,为进一步研究线粒体凋亡通路作一铺垫。  相似文献   

18.
线粒体是高度动态的细胞器,为了维持其完整性、分布和大小而不断经历着生物发生、融合、裂变和降解的协调循环,这个过程称为线粒体动力学。越来越多的证据表明,在各种疾病模型中,线粒体动力学的损伤会导致心肌损伤并且加速心血管疾病的进展,包括压力超载、缺血/再灌注和代谢紊乱等。调控线粒体动力学可能被认为是一种有效的心血管疾病治疗策略。因此,该文综述了有关线粒体动力学和心血管疾病联系的最新研究进展,希望有助于根据线粒体动力学理论优化心血管疾病治疗策略。  相似文献   

19.
心肌细胞力能学的现代问题   总被引:1,自引:0,他引:1  
心脏主要通过氧化磷酸化过程生成ATP。这一过程发生在线粒体内膜所包围的基质(matrix)内。ATP和ADP不能透过线粒体膜,生成的ATP被位于线粒体内膜的ATP-ADP易位酶,从线粒体内膜间隙转到外膜间隙,再通过磷酸肌酸途径转移到收缩系统;同时将外膜间隙的ADP转移至线粒体内膜间隙,接受高能磷酸键再合成ATP。如此往复,保障收缩系统不断得到能量供应。胞浆内高水平的肌酸和线粒体内膜间隙低水平的ADP是细胞内能量代谢过程的重要调节机制,肌酸磷酸激酶(CPK)同功酶在其中起着重要作用。肌浆网膜对于Ga~( )的摄取和释放是心肌兴奋-收缩偶联的重要调控部位。但是,除能量生成过程研究得较清楚外,涉及能量转运、贮存及利用过程的许多力能学问题尚未阐明。  相似文献   

20.
线粒体动力学即线粒体融合和分裂保持动态平衡的过程,该过程由融合/分裂相关蛋白精确调控完成,对于线粒体代谢、质量和功能有着重要的生理意义,而这些蛋白发生异常可引发线粒体动力学失衡,进而引起线粒体功能障碍并引发各种疾病状态。文中围绕基因敲除技术,详细阐述了编码融合/分裂相关蛋白的基因敲除鼠在胰岛素抵抗研究工作中的作用及应用进展,以期为今后研究线粒体动力学失衡致胰岛素抵抗的信号转导机制奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号