首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamics of microtubule-based (MT) cytoskeletons are controlled by a variety of accessory proteins: microtubule-associated proteins (MAPs), which usually stabilize MTs, and microtubule-destabilizers. Two related MAPs, XMAP215 and Stu2p, are known to stabilize MTs. However, recent studies report that these proteins have a MT-destabilizing function as well. Here we discuss the implications of these reports.  相似文献   

2.
Histones and the cytoskeletal components tubulin and actin all act as thermal ratchets, using the energy present in Brownian motion to do work. All three also bind to nucleotides. Here we suggest that histones, tubulin, and actin derive from a common ancestral protein. There is some sequence similarity between histone 2A and the bacterial tubulin homologue FtsZ. Histones and actin also share some sequence similarity in the nucleotides and at phosphate-binding sites. Thus, actin and tubulin may also be related, although this is not obvious from sequence analysis. Indeed, actin and tubulin are closely functionally related and cooperate in many cellular processes. Interestingly, recent advances in nanotechnology suggest that thermal ratchets may be able to impart lifelike properties; thus, the evolution of the ancestral histone, tubulin, and actin thermal ratchet may have been crucial in the development of complexity in living organisms.  相似文献   

3.
4.
Protein-protein interactions (PPIs) are ubiquitous biomolecular processes that are central to virtually all aspects of cellular function. Identifying small molecules that modulate specific disease-related PPIs is a strategy with enormous promise for drug discovery. The design of drugs to disrupt PPIs is challenging, however, because many potential drug-binding sites at PPI interfaces are “cryptic”: When unoccupied by a ligand, cryptic sites are often flat and featureless, and thus not readily recognizable in crystal structures, with the geometric and chemical characteristics of typical small-molecule binding sites only emerging upon ligand binding. The rational design of small molecules to inhibit specific PPIs would benefit from a better understanding of how such molecules bind at PPI interfaces. To this end, we have conducted unbiased, all-atom MD simulations of the binding of four small-molecule inhibitors (SP4206 and three SP4206 analogs) to interleukin 2 (IL2)—which performs its function by forming a PPI with its receptor—without incorporating any prior structural information about the ligands’ binding. In multiple binding events, a small molecule settled into a stable binding pose at the PPI interface of IL2, resulting in a protein–small-molecule binding site and pose virtually identical to that observed in an existing crystal structure of the IL2-SP4206 complex. Binding of the small molecule stabilized the IL2 binding groove, which when the small molecule was not bound emerged only transiently and incompletely. Moreover, free energy perturbation (FEP) calculations successfully distinguished between the native and non-native IL2–small-molecule binding poses found in the simulations, suggesting that binding simulations in combination with FEP may provide an effective tool for identifying cryptic binding sites and determining the binding poses of small molecules designed to disrupt PPI interfaces by binding to such sites.  相似文献   

5.
Recently, a novel 'two-step' model of pathogenicity has been described that suggests host-cell-derived vasculoproliferative factors play a crucial role in the pathogenesis of bacillary angiomatosis, a disease caused by the human pathogenic bacterium Bartonella henselae. The resulting proliferation of endothelial cells could be interpreted as bacterial pathogens triggering the promotion of their own habitat: the host cell. Similar disease mechanisms are well known in the plant pathogen Agrobacterium tumefaciens, which causes crown gall disease. There are notable similarities between the pathogenicity of A. tumefaciens leading to tumourous disease in plants and to the B. henselae-triggered proliferation of endothelial cells in humans. Here, we hypothesize that this pathogenicity strategy might be common to several bacterial species in different hosts owing to shared pathogenicity factors.  相似文献   

6.
7.
8.
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.  相似文献   

9.
Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its tight interaction with GlyR β, gephyrin only loosely interacts with GABA(A)R α2, whereas it has an intermediate affinity for the GABA(A)R α1 and α3 subunits. Despite the wide variation in affinities and the low overall sequence homology among the identified receptor subunits, competition assays confirmed the receptor-gephyrin interaction to be a mutually exclusive process. Selected gephyrin point mutants that critically weaken complex formation with GlyR β also abolished the GABA(A)R α1 and α3 interactions. Additionally, we identified a common binding motif with two conserved aromatic residues that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key insights regarding similarities and differences in the complex formation between gephyrin and GABA(A)Rs compared with GlyRs and, hence, the accumulation of these receptors at postsynaptic sites.  相似文献   

10.
The Aurora A (AurA) serine/threonine kinase controls multiple aspects of cell division and plays a key role in centrosome maturation and bipolar spindle assembly. The pleiotropic functions of AurA depend on its interaction with several cofactors, the best known of which is TPX2. TPX2 targets AurA to spindle microtubules (MTs) and activates it, both allosterically and by protecting the activation loop (T-loop) of the kinase domain from dephosphorylation. Although several factors have been implicated in the regulation of AurA at centrosomes, the underlying mechanism has remained elusive, and the existence of a distinct centrosome-specific AurA activator has been proposed. Our recent study has identified this activator as Cep192/Spd-2, one of the key factors in centrosome biogenesis. Cep192 targets AurA to centrosomes, where it promotes its activation by a novel, oligomerization-dependent mechanism characterized by extensive T-loop phosphorylation and high kinase activity. This process is key to the function of centrosomes as microtubule-organizing centers. Here, our findings are discussed in the context of other recent studies on the Aurora kinases, with an emphasis on their role in spindle assembly. The collected evidence suggests that the ‘hot spots’ of MT nucleation, centrosomes and kinetochores, rely on the oligomerization-mediated mechanism of activation of AurA and AurB, respectively.  相似文献   

11.
Do X and Y spermatozoa differ in proteins?   总被引:7,自引:0,他引:7  
Hendriksen PJ 《Theriogenology》1999,52(8):1295-1307
This article reviews the current knowledge about X- and Y-chromosomal gene expression during spermatogenesis and possible differences between X- and Y-chromosome-bearing spermatozoa (X and Y sperm) in relation to whether an immunological method of separation of X and Y spermatozoa might some day be feasible. Recent studies demonstrated that X- and Y-chromosome-bearing spermatids do express X- and Y-chromosomal genes that might theoretically result in protein differences between X and Y sperm. Most, if not all, of these gene products, however, are expected to be shared among X and Y spermatids via intercellular bridges. Studies on aberrant mouse strains indicate that complete sharing might not occur for all gene products. This keeps open the possibility that X and Y sperm may differ in proteins, but until now, this has not been confirmed by comparative studies between flow-cytometrically sorted X and Y sperm for H-Y antigen or other membrane proteins.  相似文献   

12.
13.
Summary Amino acid and DNA sequence comparisons suggest that many sequence-specific DNA-binding proteins have in common and homologous region of about 22 amino acids. This region corresponds to two consecutive α-helices that occur in bot Cro and cI repressor proteins of bacteriophage λ and in catabolite gene activator protein ofEscherichia coli and are presumed to interact with DNA. The results obtained here suggest that this α-helical DNA-binding fold occurs in many proteins that regulate gene expression. It also appears that this DNA-binding unit evolved from a common evolutionary precursor.  相似文献   

14.
The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.  相似文献   

15.
The present study investigated the effect of a click train on the bisection of time, number and length when each modality was presented sequentially and non-sequentially. For the bisection of time, the results showed that the clicks shifted the bisection function toward the left and decreased the bisection point (point of subjective equality), thus suggesting that the stimulus duration was judged longer with than without clicks, and this is both in the sequential and the non-sequential condition. For the bisection of number and length, the click train again produced a leftward shift of the bisection function with the result that the number was judged greater and the line longer with than without clicks, but only when the number and the length were presented sequentially. This suggests that the click-related lengthening effect is not due to speeding up of an internal clock specifically devoted to the processing of time, but rather to an effect acting on an accumulator process that is commonly mobilized when judging the magnitude of quantities presented sequentially.  相似文献   

16.
Carver JA  Rekas A  Thorn DC  Wilson MR 《IUBMB life》2003,55(12):661-668
Small heat-shock proteins (sHsps) and clusterin are molecular chaperones that share many functional similarities despite their lack of significant sequence similarity. These functional similarities, and some differences, are discussed. sHsps are ubiquitous intracellular proteins whereas clusterin is generally found extracellularly. Both chaperones potently prevent the amorphous aggregation and precipitation of target proteins under stress conditions such as elevated temperature, reduction and oxidation. In doing so, they act on the slow, off-folding protein pathway. The conformational dynamism and aggregated state of both proteins may be crucial for their chaperone function. Subunit exchange is likely to be important in regulating chaperone action; the dissociated form of the protein is probably the chaperone-active species rather than the aggregated state. They both exert their chaperone action without the need for hydrolysis of ATP and have little ability to refold target proteins. Increased expression of sHsps and clusterin accompanies a range of diseases that arise from protein misfolding and deposition of highly structured protein aggregates known as amyloid fibrils, e.g., Alzheimer's, Creutzfeldt-Jakob and Parkinson's diseases. The interaction of sHsps and clusterin with fibril-forming species is discussed along with their ability to prevent fibril formation.  相似文献   

17.
Conspecific brood parasitism (CBP) is an important alternative breeding strategy for gaining reproductive output in birds. While interactions between hosts and parasites and consequences of CBP to breeding success of both parties have been studied a lot, the roles of host characteristics and nest site characteristics in CBP have received less attention. We studied the relative importance of host‐related traits, such as female condition and breeding experience, and nest‐site‐related factors, such as overall nest site preference and occupation rate, in explaining the occurrence of CBP in a common goldeneye Bucephala clangula population. We used spatially and temporally extensive data sets, analysed the data with generalized linear mixed models that allowed us to account for the non‐independency of individual nesting attempts across females and nesting sites, and used an information theoretic approach in model selection and inference. About half of the nests were parasitized annually during the seven year study period. The occurrence of CBP decreased with advancement of the breeding season but late nests were also frequently parasitized. We found that the occurrence of CBP was better explained by nest‐site characteristics than host traits, implying that parasitic females target a given nest based on factors related to the nest site itself rather than on the host. Our results suggest that more attention should be paid to factors associated with nest site attractiveness and quality when studying laying decisions of parasites and the occurrence of CBP in general.  相似文献   

18.
Human diseases like AIDS, malaria, and pneumonia are caused by pathogens that corrupt host chemokine G-protein coupled receptors for molecular docking. Comparatively, little is known about plant host factors that are required for pathogenesis and that may serve as receptors for the entry of pathogenic microbes. Here, we review potential analogies between human chemokine receptors and the plant seven-transmembrane MLO protein, a candidate serving a dual role as docking molecule and defence modulator for the phytopathogenic powdery mildew fungus.  相似文献   

19.
In a search for proteins that bind nuclear localization sequences (NLSs), a number of nucleolar proteins with diverse functions were found. It is thought that the assay fortuitously uncovered a novel domain that mediates the interaction between these nucleolar proteins and ribosomal proteins containing NLS-like sequences. The domain is highly acidic and contains a number of serines forming putative casein kinase II sites. Here, we propose a model in which the nucleolar proteins catalyse the assembly of ribosomal proteins with pre-rRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号