首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species effects on nitrogen cycling: a test with perennial grasses   总被引:51,自引:9,他引:42  
Summary To test for differing effects of plant species on nitrogen dynamics, we planted monocultures of five perennial grasses (Agropyron repens, Agrostis scabra, Poa pratensis, Schizachyrium scoparium, and Andropogon gerardi) on a series of soils ranging from sand to black soil. In situ net N mineralization was measured in the monocultures for three years. By the third year, initially identical soils under different species had diverged up to 10-fold in annual net mineralization. This divergence corresponded to differences in the tissue N concentrations, belowground lignin concentrations, and belowground biomasses of the species. These results demonstrate the potential for strong feedbacks between the species composition of vegetation and N cycling. If individual plant species can affect N mineralization and N availability, then competition for N may lead to positive or negative feedbacks between the processes controlling species composition and ecosystem processes such as N and C cycling. These feedbacks create the potential for alternative stable states for the vegetation-soil system given the same initial abiotic conditions.  相似文献   

2.
Plant species can both directly and indirectly affect soil processes in various ways, including through functional traits related to the quantity and chemistry of biomass produced. Understanding how functional traits affect soil processes may be particularly important in restorations that specifically select a target plant community. In this study, I examined how species differing in litter traits alter decomposition, both directly via chemistry and indirectly via influences on soil microclimate. Decomposition dynamics of two old-field grasses were compared with the native prairie grass, Andropogon gerardii, in two Michigan old-fields. Decomposition rates were strongly, negatively related to tissue chemistry, but showed little effect of microclimate differences. Soil bacterial community composition differed between species at one site, while extracellular enzyme activities differed between species at the other site. These findings suggest plant species may be altering microbial community function. Overall, litter chemistry was the dominant factor determining decomposition rates, suggesting that restoring native prairie grasses with recalcitrant litter into grass-dominated old-fields could slow litter decomposition and ultimately lead to changes in soil carbon and nitrogen cycling. Eventually, this could lead to soils that more closely resemble the more organic-rich soils of native prairies and ultimately increase prairie plant community restoration success.  相似文献   

3.
Castells  Eva  Peñuelas  Josep  Valentine  David W. 《Plant and Soil》2003,251(1):155-166
The effects of the understory shrub Ledum palustre on soil N cycling were studied in a hardwood forest of Interior Alaska. This species releases high concentrations of phenolic compounds from green leaves and decomposing litter by rainfall. Organic and mineral soils sampled underneath L. palustre and at nearby non-Ledum sites were amended with L. palustre litter leachates and incubated at controlled conditions. We aimed to know (i) whether L. palustre presence and litter leachate addition changed net N cycling rates in organic and mineral soils, and (ii) what N cycling processes, including gross N mineralization, N immobilization and gross N nitrification, were affected in association with L. palustre. Our results indicate that N transformation rates in the surface organic horizon were not affected by L. palustre presence or leachate addition. However, mineral soils underneath L. palustre as well as soils amended with leachates had significantly higher C/N ratios and microbial respiration rates, and lower net N mineralization and N-to-C mineralization compared to no Ledum and no leachates soils. No nitrification was detected. Plant presence and leachate addition also tended to increase both gross N mineralization and immobilization. These results suggest that soluble C compounds present in L. palustre increased N immobilization in mineral soils when soil biota used them as a C source. Increases in gross N mineralization may have been caused by an enhanced microbial biomass due to C addition. Since both plant presence and leachate addition decreased soil C/N ratio and had similar effects on N transformation rates, our results suggest that litter leachates could be partially responsible for plant presence effects. The lower N availability under L. palustre canopy could exert negative interactions on the establishment and growth of other plant species.  相似文献   

4.
Standing dead and green foliage litter was collected in early November 1990 from Andropogon gerardii (C4), Sorghastrum nutans (C4), and Poa pratensis (C3) plants that were grown in large open-top chambers under ambient or twice ambient CO2 and with or without nitrogen fertilization (45 kg N ha−1). The litter was placed in mesh bags on the soil surface of pristine prairie adjacent to the growth treatment plots and allowed to decay under natural conditions. Litter bags were retrieved at fixed intervals and litter was analyzed for mass loss, carbon chemistry, and total Kjeldahl nitrogen and phosphorus. The results indicate that growth treatments had a relatively minor effect on the initial chemical composition of the litter and its subsequent rate of decay or chemical composition. This suggests that a large indirect effect of CO2 on surface litter decomposition in the tallgrass prairie would not occur by way of changes in chemistry of leaf litter. However, there was a large difference in characteristics of leaf litter decomposition among the species. Poa leaf litter had a different initial chemistry and decayed more rapidly than C4 grasses. We conclude that an indirect effect of CO2 on decomposition and nutrient cycling could occur if CO2 induces changes in the relative aboveground biomass of the prairie species.  相似文献   

5.
Experimental microcosms (40 X 52 X 32 cm) containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil were maintained under mycorrhizal (untreated control) or mycorrhizal-suppressed (fungicide-treated) conditions to examine plant growth, demographic, and community responses to mycorrhizal symbiosis. The fungicide benomyl successfully reduced mycorrhizal root colonization in the fungicide-treated microcosms to only 6.4% (an 83% reduction relative to mycorrhizal controls). Suppression of mycorrhizas resulted in a 31% reduction in total net aboveground plant production and changes in the relative production of C4 and C3 plants. The C4 tallgrasses Andropogon gerardi and Sorghastrum nutans produced less plant biomass in the fungicide-treated microcosms, and had a greater ratio of reproductive to vegetative biomass. Cool-season C3 grasses, Koeleria pyramidata and Poa pratensis accumulated more biomass and were a significantly greater proportion of total community biomass in mycorrhizal-suppressed microcosms. Forbs showed variable responses to mycorrhizal suppression. The two legumes Amorpha canescens and Dalea purpurea had significantly lower survivorship in the fungicide-treated microcosms, relative to the controls. The results confirm the high mycorrhizal dependency and growth responsiveness of dominant prairie grasses, and indicate that differential growth and demographic responses to mycorrhizal colonization among species may significantly affect plant productivity and species relative abundances in tallgrass prairie.  相似文献   

6.
The direct and indirect effects of increasing levels of atmospheric carbon dioxide (CO2) on plant nitrogen (N) content were studied in a shortgrass steppe ecosystem in northeastern Colorado, USA. Beginning in 1997 nine experimental plots were established: three open-top chambers with ambient CO2 levels (approximately 365 mol mol–1), three open-top chambers with twice-ambient CO2 levels (approximately 720 mol mol–1), and three unchambered control plots. After 3 years of growing-season CO2 treatment, the aboveground N concentration of plants grown under elevated atmospheric CO2 decreased, and the carbon–nitrogen (C:N) ratio increased. At the same time, increased aboveground biomass production under elevated atmospheric CO2 conditions increased the net transfer of N out of the soil of elevated-CO2 plots. Aboveground biomass production after simulated herbivory was also greater under elevated CO2 compared to ambient CO2. Surprisingly, no significant changes in belowground plant tissue N content were detected in response to elevated CO2. Measurements of individual species at peak standing phytomass showed significant effects of CO2 treatment on aboveground plant tissue N concentration and significant differences between species in N concentration, suggesting that changes in species composition under elevated CO2 will contribute to overall changes in nutrient cycling. Changes in plant N content, driven by changes in aboveground plant N concentration, could have important consequences for biogeochemical cycling rates and the long-term productivity of the shortgrass steppe as atmospheric CO2 concentrations increase.  相似文献   

7.
Semiarid sagebrush ecosystems are being transformed by wildfire, rangeland improvement techniques, and exotic plant invasions, but the effects on ecosystem C and N dynamics are poorly understood. We compared ecosystem C and N pools to 1 m depth among historically grazed Wyoming big sagebrush, introduced perennial crested wheatgrass, and invasive annual cheatgrass communities, to examine whether the quantity and quality of plant inputs to soil differs among vegetation types. Natural abundance δ15N isotope ratios were used to examine differences in ecosystem N balance. Sagebrush-dominated sites had greater C and N storage in plant biomass compared to perennial or annual grass systems, but this was predominantly due to woody biomass accumulation. Plant C and N inputs to soil were greatest for cheatgrass compared to sagebrush and crested wheatgrass systems, largely because of slower root turnover in perennial plants. The organic matter quality of roots and leaf litter (as C:N ratios) was similar among vegetation types, but lignin:N ratios were greater for sagebrush than grasses. While cheatgrass invasion has been predicted to result in net C loss and ecosystem degradation, we observed that surface soil organic C and N pools were greater in cheatgrass and crested wheatgrass than sagebrush-dominated sites. Greater biomass turnover in cheatgrass and crested wheatgrass versus sagebrush stands may result in faster rates of soil C and N cycling, with redistribution of actively cycled N towards the soil surface. Plant biomass and surface soil δ15N ratios were enriched in cheatgrass and crested wheatgrass relative to sagebrush-dominated sites. Source pools of plant available N could become 15N enriched if faster soil N cycling rates lead to greater N trace gas losses. In the absence of wildfire, if cheatgrass invasion does lead to degradation of ecosystem function, this may be due to faster nutrient cycling and greater nutrient losses, rather than reduced organic matter inputs.  相似文献   

8.
Human-mediated nutrient amendments have widespread effects on plant communities. One of the major consequences has been the loss of species diversity under increased nutrient inputs. The loss of species can be functional group dependent with certain functional groups being more prone to decline than others. We present results from the sixth year of a long-term fertilization and litter manipulation study in an old-field grassland. We measured plant tissue chemistry (C:N ratio) to understand the role of plant physiological responses in the increase or decline of functional groups under nutrient manipulations. Fertilized plots had significantly more total aboveground biomass and live biomass than unfertilized plots, which was largely due to greater productivity by exotic C3 grasses. We found that both fertilization and litter treatments affected plant species richness. Species richness was lower on plots that were fertilized or had litter intact; species losses were primarily from forbs and non-Poaceae graminoids. C3 grasses and forbs had lower C:N ratios under fertilization with forbs having marginally greater %N responses to fertilization than grasses. Tissue chemistry in the C3 grasses also varied depending on tissue type with reproductive tillers having higher C:N ratios than vegetative tillers. Although forbs had greater tissue chemistry responses to fertilization, they did not have a similar positive response in productivity and the number of forb species is decreasing on our experimental plots. Overall, differential nutrient uptake and use among functional groups influenced biomass production and species interactions, favoring exotic C3 grasses and leading to their dominance. These data suggest functional groups may differ in their responses to anthropogenic nutrient amendments, ultimately influencing plant community composition.  相似文献   

9.
Grass species and soil type effects on microbial biomass and activity   总被引:15,自引:0,他引:15  
We evaluated plant versus soil type controls on microbial biomass and activity by comparing microbial biomass C, soil respiration, denitrification potential, potential net N mineralization and nitrification in different soils supporting four grass species, and by growing a group of 10 different grass species on the same soil, in two experiments respectively. In the first experiment, none of the microbial variables showed significant variation with grass species while all variables showed significant variation with soil type, likely due to variation in soil texture. In the second experiment, there were few significant differences in microbial biomass C among the 10 grasses but there were significant relationships between variation in microbial biomass C and potential net N mineralization (negative), soil respiration (positive) and denitrification (positive). There was no relationship between microbial biomass C and either plant yield or plant N concentration. The results suggest that 1) soil type is a more important controller of microbial biomass and activity than grass species, 2) that different grass species can create significant, but small and infrequent, differences in microbial biomass and activity in soil, and 3) that plant-induced variation in microbial biomass and activity is caused by variation in labile C input to soil.  相似文献   

10.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   

11.
Wilsey BJ  Polley HW 《Oecologia》2006,150(2):300-309
Plant species in grasslands are often separated into groups (C4 and C3 grasses, and forbs) with presumed links to ecosystem functioning. Each of these in turn can be separated into native and introduced (i.e., exotic) species. Although numerous studies have compared plant traits between the traditional groups of grasses and forbs, fewer have compared native versus introduced species. Introduced grass species, which were often introduced to prevent erosion or to improve grazing opportunities, have become common or even dominant species in grasslands. By virtue of their abundances, introduced species may alter ecosystems if they differ from natives in growth and allocation patterns. Introduced grasses were probably selected nonrandomly from the source population for forage (aboveground) productivity. Based on this expectation, aboveground production is predicted to be greater and root mass fraction to be smaller in introduced than native species. We compared root and shoot distribution and tissue quality between introduced and native C4 grass species in the Blackland Prairie region of Central Texas, USA, and then compared differences to the more well-studied divergence between C4 grasses and forbs. Comparisons were made in experimental monocultures planted with equal-sized transplants on a common soil type and at the same density. Aboveground productivity and C:N ratios were higher, on average, in native grasses than in native forbs, as expected. Native and introduced grasses had comparable amounts of shallow root biomass and tissue C:N ratios. However, aboveground productivity and total N were lower and deep root biomass and root mass fraction were greater in native than introduced grasses. These differences in average biomass distribution and N could be important to ecosystems in cases where native and introduced grasses have been exchanged. Our results indicate that native–introduced status may be important when interpreting species effects on grassland processes like productivity and plant N accumulation.  相似文献   

12.
Seastedt TR  Suding KN 《Oecologia》2007,151(4):626-636
Knapweeds (Centaurea spp.) are among the most invasive of non-indigenous plant species that have colonized western North America over the last century. We conducted a 4-year experiment in a reconstructed grassland to test hypotheses related to the ability of grasslands to resist the invasion of diffuse knapweed (C. diffusa). We experimentally invaded C. diffusa and three native species into areas where we manipulated soil nitrogen (N) and phosphorus (P) availability and removed extant grasses to reduce competition. We evaluated the growth response of these species to these resources and competitive manipulations. Of the native species that were experimentally added, only one species, Ratibida pinnata (prairie coneflower), established in any numbers. Establishment values in intact vegetation were low for both species, but establishment by C. diffusa (0.02%) clearly outperformed that of R. pinnata (0.001%). Under reduced grass competition, establishment was enhanced, but the values for C. diffusa (0.68%) were not statistically different from those of R. pinnata (0.57%). Neither species performed better under higher soil nutrients in the presence of competing grasses. In plots with both species, biomass of the two planted species was positively correlated, but the biomass of both species was negatively correlated with non-added weedy species. Subsequent harvests of C. diffusa indicated that establishment was enhanced in treatments with higher soil nutrients but that the biomass of these plants could only be enhanced when plant competition was also reduced. These results indicate that C. diffusa can establish in intact grasslands at rates higher than natives, but opportunism rather than competitive ability best describes the invasiveness of C. diffusa. Thus, the mechanisms contributing to the establishment of this knapweed species are different from factors identified as contributing to the dominance of this invader.  相似文献   

13.
Invasive plant species alter plant community composition and ecosystem function. In the United States, California native grasslands have been displaced almost completely by invasive annual grasses, with serpentine grasslands being one of the few remaining refugia for California grasslands. This study examined how the invasive annual grass, Aegilops triuncialis, has altered decomposition processes in a serpentine annual grassland. Our objectives were to (1) assess howA. triuncialis alters primary productivity and litter tissue chemistry, (2) determine whether A. triuncialis litter is more recalcitrant to decomposition than native litter, and (3) evaluate whether differences in the soil microbial community in A. triuncialis-invaded and native-dominated areas result in different decomposition rates of invasive and/or native plant litter. In invaded plant patches, A. triuncialis was approximately 50% of the total plant cover, in contrast to native plant patches in which A. triuncialis was not detected and native plants comprised over 90% of the total plant cover. End-of-season aboveground biomass was 2-fold higher in A. triuncialis dominated plots compared to native plots; however, there was no significant difference in belowground biomass. Both above- and below-ground plant litter from A. triuncialis plots had significantly higher lignin:N and C:N ratios and lower total N, P, and K than litter from native plant plots. Aboveground litter from native plots decomposed more rapidly than litter from A. triuncialis plots, although there was no difference in decomposition of belowground tissues. Soil microbial community composition associated with different soil patch types had no effect on decomposition rates. These data suggest that plant invasion impacts decomposition and nutrient cycling through changes in plant community tissue chemistry and biomass production.  相似文献   

14.
大气氮(N)沉降增加加速了土壤N循环, 引起微生物生物量碳(C):N:磷(P)生态化学计量关系失衡、植物种丧失和生态系统服务功能降低等问题。开展N添加下植物群落组成与微生物生物量生态化学计量特征关系的研究, 可为深入了解N沉降增加引起植物多样性降低的机理提供新思路。该文以宁夏荒漠草原为研究对象, 探讨了N添加下植物生物量和群落多样性的变化趋势, 分析了微生物生物量C:N:P生态化学计量特征独立及其与其他土壤因子共同对植物群落组成的影响。结果表明: N添加下猪毛菜(Salsola collina)生物量呈显著增加趋势, 牛枝子(Lespedeza potaninii)生物量呈逐渐降低趋势, 其他植物种生物量亦呈降低趋势但未达到显著水平; 沿N添加梯度, Shannon-Wiener多样性指数、Simpson优势度指数和Patrick丰富度指数均呈先略有增加后逐渐降低的趋势; N添加提高了微生物生物量N含量和N:P, 降低了微生物生物量C:N; 植物群落组成与微生物生物量N含量、微生物生物量C:N、微生物生物量N:P、土壤NO3 --N浓度、土壤NH4 +-N浓度以及土壤全P含量有较强的相关关系; 微生物生物量C:N:P生态化学计量特征对植物种群生物量和群落多样性变化的独立解释力较弱, 但却与其他土壤因子共同解释了较大变差, 意味着N添加下微生物生物量C:N:P生态化学计量特征对植物群落组成的影响与其他土壤因子高度相关。  相似文献   

15.
Schaeffer SM  Evans RD 《Oecologia》2005,145(3):425-433
Biogeochemical cycles in arid and semi-arid ecosystems depend upon the ability of soil microbes to use pulses of resources. Brief periods of high activity generally occur after precipitation events that provide access to energy and nutrients (carbon and nitrogen) for soil organisms. To better understand pulse-driven dynamics of microbial soil nitrogen (N) cycling in an arid Colorado Plateau ecosystem, we simulated a pulsed addition of labile carbon (C) and N in the field under the canopies of the major plant species in plant interspaces. Soil microbial activity and N cycling responded positively to added C while NH4+–N additions resulted in an accumulation of soil NO3. Increases in microbial activity were reflected in higher rates of respiration and N immobilization with C addition. When both C and N were added to soils, N losses via NH3 volatilization decreased. There was no effect of soil C or N availability on microbial biomass N suggesting that the level of microbial activity (respiration) may be more important than population size (biomass) in controlling short-term dynamics of inorganic and labile organic N. The effects of C and N pulses on soil microbial function and pools of NH4+–N and labile organic N were observed to last only for the duration of the moisture pulse created by treatment addition, while the effect on the NO3–N pool persisted after soils dried to pre-pulse moisture levels. We observed that increases in available C lead to greater ecosystem immobilization and retention of N in soil microbial biomass and also lowered rates of gaseous N loss. With the exception of trace gas N losses, the lack of interaction between available C and N on controlling N dynamics, and the subsequent reduction in plant available N with C addition has implications for the competitive relationships between plants species, plants and microbes, or both.  相似文献   

16.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

17.
In arctic tundra soil, oxygen depletion associated with soil flooding may control plant growth either directly through anoxia or indirectly through effects on nutrient availability. This study was designed to evaluate whether plant growth and physiology of two arctic sedge species are more strongly controlled by the direct or indirect effects of decreased soil aeration. Eriophorum angustifolium and E. vaginatum, which originate from flooded and well-drained habitats, respectively, were grown in an in situ transplant garden at two levels of soil oxygen, nitrogen, and phosphorus availability over two growing seasons. In both species, N addition had a stronger effect on growth and biomass allocation than P addition or soil oxygen depletion. Net photosynthesis and carbohydrate concentrations were relatively insensitive to changes in these factors. Biomass reallocated from shoots to below-ground parts in response to limited N supply was equally divided between roots (nutrient acquisition) and perennating rhizomes (storage tissue formation) in E. angustifolium. E. Vaginatum only increased its allocation to rhizomes. In the flood-tolerant E. angustifolium, growth was improved by soil anoxia and biomass allocation among plant parts was not significantly affected. Contrary to our initial hypothesis, whole-plant growth in E. vaginatum improved in flooded soils; however, it only did so when N availability was high. Under low N availability growth in flooded soils was reduced by 20% compared to growth in the aerobic environment. Reduced biomass allocation to rhizomes and thus to storage potential under anaerobic conditions may reduce long-term survival of E. vaginatum in flooded habitats.  相似文献   

18.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

19.
A method is evaluated that employs variation in stable C and N isotopes from fractionations in C and N acquisition and growth to predict root biomasses of three plant species in mixtures. Celtis laevigata Willd. (C3), Prosopis glandulosa Torr. (C3, legume) and Schizachyrium scoparium (Michx.) Nash (C4), or Gossypium hirsutum L. (C3), Glycine max (L.) Merr. (C3 legume), and Sorghum bicolor (L.) Moench (C4) were grown together in separate, three-species combinations. Surface roots (0–10 cm depth) of each species from each of the two combinations were mixed in various proportions, and the relative abundances of 15N and 14N and 13C and 12C in prepared mixtures, surface roots of single species, and roots extracted from the 80-cm soil profile in which each species combination was grown were analyzed by mass spectrometry. An algebraic determination which employed the δ 13C, % 15N, and C and N concentrations of root subsamples of individual species accounted for more than 95% of the variance in biomass of each species in prepared mixtures with G. max, G. hirsutum, and S. bicolor. A similar analysis demonstrated species-specific differences in rooting patterns. Root biomasses of the C4 monocots in each combination, S. scoparium and S. bicolor, were concentrated in the upper 20 cm of soil, while those of G. hirsutum and the woody P. glandulosa were largest in lower soil strata. Analyses of stable C and N isotopes can effectively be used to distinguish roots of species which differ in ratios of 15N to 14N and 13C to 12C and thus to study belowground competition between or rooting patterns of associated species with different C and N isotope signatures. The method evaluated can be extended to quantify aboveground and belowground biomasses of component species in mixtures with isotopes of other elements or element concentrations that differ consistently among plants of interest.  相似文献   

20.
The cover and abundance of Juniperus virginiana L. in the U.S. Central Plains are rapidly increasing, largely as a result of changing land-use practices that alter fire regimes in native grassland communities. Little is known about how conversion of native grasslands to Juniperus-dominated forests alters soil nutrient availability and ecosystem storage of carbon (C) and nitrogen (N), although such land-cover changes have important implications for local ecosystem dynamics, as well as regional C and N budgets. Four replicate native grasslands and adjacent areas of recent J. virginiana encroachment were selected to assess potential changes in soil N availability, leaf-level photosynthesis, and major ecosystem C and N pools. Net N mineralization rates were assessed in situ over two years, and changes in labile soil organic pools (potential C and N mineralization rates and microbial biomass C and N) were determined. Photosynthetic nitrogen use efficiencies (PNUE) were used to examine differences in instantaneous leaf-level N use in C uptake. Comparisons of ecosystem C and N stocks revealed significant C and N accrual in both plant biomass and soils in these newly established forests, without changes in labile soil N pools. There were few differences in monthly in situ net N mineralization rates, although cumulative annual net N mineralization was greater in forest soils compared to grasslands. Conversely, potential C mineralization was significantly reduced in forest soils. Encroachment by J. virginiana into grasslands results in rapid accretion of ecosystem C and N in plant and soil pools with little apparent change in N availability. Widespread increases in the cover of woody plants, like J. virginiana, in areas formerly dominated by graminoid species suggest an increasing role of expanding woodlands and forests as regional C sinks in the central U.S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号