首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R2 = 0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.  相似文献   

2.
Microsporidia are obligate intracellular parasites related to fungi with resistant spores against various environmental stresses. The rigid spore walls of these organisms are composed of two major layers, which are the exospore and the endospore. Two spore wall proteins (the endosporal protein-SWP30 and the exosporal protein-SWP32) have been previously identified in Nosema bombycis. In this study, using the MALDI-TOF-MS technique, we have characterised a new 25.7-kDa spore wall protein (SWP26) recognised by monoclonal antibody 2G10. SWP26 is predicted to have a signal peptide, four potential N-glycosylation sites, and a C-terminal heparin-binding motif (HBM) which is known to interact with extracellular glycosaminoglycans. By using a host cell binding assay, recombinant SWP26 protein (rSWP26) can inhibit spore adherence by 10%, resulting in decreased host cell infection. In contrast, the mutant rSWP26 (rΔSWP26, without HBM) was not effective in inhibiting spore adherence. Immuno-electron microscopy revealed that this protein was expressed largely in endospore and plasma membrane during endospore development, but sparsely distributed in the exospore of mature spores. The present results suggest that SWP26 is a microsporidia cell wall protein that is involved in endospore formation, host cell adherence and infection in vitro. Moreover, SWP26 could be used as a good prospective target for diagnostic research and drug design in controlling the silkworm, Bombyx mori, pebrine disease in sericulture.  相似文献   

3.
A new lepidopteran cell line, NTU-YB, was derived from pupal tissue of Eurema hecabe (Linnaeus) (Pieridae: Lepidoptera). The doubling time of YB cells in TNM-FH medium supplemented with 8% FBS at 28 °C was 26.87 h. The chromosome numbers of YB cells varied widely from 21 to 196 with a mean of 86. Compared to other insect cell lines, the YB cells produced distinct esterase, malate dehydrogenase, and lactate dehydrogenase isozyme patterns. Identity of the internal transcribed spacer region-I (ITS-I) of YB cells to E. hecabe larvae was 96% and to Eurema blanda larvae (tissue isolated from head) was 81%. The YB cells were permissive to Nosema sp. isolated from E. blanda and the infected YB cells showed obvious cytopathic effects after 3 weeks post inoculation. The highest level of spore production was at 4 weeks post inoculation when cells were infected with the Nosema isolate, and spore production was 1.34 ± 0.9 × 106 spore/ml. Ultrastructrual studies showed that YB cells can host in vitro propagation of the E. blanda Nosema isolate, and developing stages were observed in the host cell nuclei as observed in the natural host, E. blanda. The NTU-YB cell line is also susceptible to Nosema bombycis.  相似文献   

4.
Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also discussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents.  相似文献   

5.
Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88 ± 11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data.  相似文献   

6.
对双色真藓(Bryum dichotomum Hedw.)的孢子发育过程及愈伤组织的诱导和培养进行了研究。结果表明,双色真藓孢子萌发和原丝体发育属于典型的真藓型。将双色真藓原丝体接种在含有2.0 mg L-1的硅酸钠和3.0 mg L-1 6-BA的MS固体培养基上,可诱导双色真藓原丝体分化为愈伤组织。愈伤组织在含有2.0 mg L-1的硅酸钠、1.0 mg L-12,4-D和1.0 mg L-1 6-BA的MS固体培养基上可以长期继代培养。而愈伤组织在含有2.0 mg L-1的硅酸钠、1.0 mg L-1 2,4-D和1.0 mg L-1 6-BA的MS液体培养基中可以悬浮培养,且生长迅速,培养28 d达到接种鲜重的9.25倍。  相似文献   

7.
A spore assay was developed to measure the relative density of spores of the nematophagous fungus Hirsutella rhossiliensis in soil. Orchard soil containing H. rhossiliensis-parasitized Criconemella xenoplax was placed in vials and incubated for 0-120 days before the addition of probe nematodes, Heterorhabditis heliothidis juveniles. After 18 hours, H. heliothidis were extracted from the soil and examined for adhering spores of H. rhossiliensis. No spores were detected when H. heliothidis were added to freshly mixed soil, but the percentage of H. heliothidis with spores increased rapidly if soil was incubated undisturbed. Because mixing soil detaches spores from phialides, the results indicate that spores must be attached to phialides to adhere to nematodes. The spore assay was compared with a plate assay that measures the population density of H. rhossiliensis-parasitized C. xenoplax. Results from the two assays were highly correlated, suggesting that spores occur in three phases: reserves in nematodes that may be converted into spores; spores on phialides and therefore capable of adhering to nematodes; and spores detached from phialides and thus incapable of adhering to nematodes.  相似文献   

8.
A comparison of Most-Probable-Number Rapid Viability (MPN RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs from a multi-center validation study was performed. The purpose of the study was to compare environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were typically within 1-log of the values from a plate count method for all three levels of spores tested (3.1 × 104, 400, and 40 spores sampled from surfaces with swabs) even in the presence of debris. The MPN method tended to overestimate the expected result, especially at lower spore levels. Blind negative samples were correctly identified using both methods showing a lack of cross contamination. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols, enhancing its utility for characterization and clearance following a biothreat agent release.  相似文献   

9.
We report an additional case of long-term persistence of Paranosema locustae in grasshoppers of Argentina. The pathogen was introduced from North America on rangeland at Loncopué, Neuquén province. Microsporidia were not detected in pre-introduction samples whereas infected grasshoppers were found 11 years after introduction. Affected grasshoppers were the melanoplines Dichroplus elongatus, Dichroplus maculipennis, and Scotussa lemniscata, some of them with high spore loads. The case highlights the ability of P. locustae to recycle in local grasshopper communities by parasitizing susceptible species other than the natural hosts.  相似文献   

10.
In order to investigate the effects of climatic and edaphic factors on arbuscular mycorrhizal (AM) fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, spore density, mycorrhizal colonization and gene diversity were analyzed by using the methods of microscopy and polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) respectively. The results showed that H. rhamnoides could form strong symbiotic relationships with AM fungi. There existed obvious differences in AM fungal colonization among five sampling sites in the Loess Plateau (P < 0.05). Correlation analysis showed that AM fungal colonization and spore density were closely related with climatic and edaphic factors. 42 different species (band types) were found in the DGGE gel. Based on analysing the position and intensity of AM fungal DGGE bands, the gene diversity indices, including species richness, evenness, Simpsom’s and Shannon-Weiner index, showed significant differences among five sampling sites (P < 0.05). All the AM species could be classified into four groups in the biplot of canonical correspondence analysis (CCA), and each group had various responses to climatic and edaphic factors. Monte Carlo random test indicated that soil available phosphorus (F = 2.26, P = 0.025) and spore density (F = 1.76, P = 0.006) were the dominating factors affecting AM fungal communities. In conclusion, AM fungal colonization and community diversity in the rhizosphere of H. rhamnoides showed obvious spatial heterogeneity among the different areas of the Loess Plateau, and climatic and edaphic conditions were important factors affecting the AM fungal communities. Therefore, screening and application of AM fungal strains in the Loess Plateau need to fully consider the local climatic and edaphic conditions.  相似文献   

11.
Pasteuria penetrans spore adhesion to Meloidogyne javanica second-stage juveniles (J2) was examined following several different pretreatments of the latter. The detergents sodium dodecyl sulfate and Triton X-100, the carbohydrates fucose and α-methyl-D-mannoside, and the lectins concanavalin A and wheat germ agglutinin reduced spore attachment. Spores exposed to M. javanica surface coat (SC) extract exhibited decreased adherence to the J2 surface. Second-stage juveniles that had been treated with antibodies recognizing a 250-kDa antigen of J2 SC extract had fewer spores attached to their surfaces, as compared to nontreated J2, except in the head region. This inhibition pattern was similar to that of antibody-labelling on M. javanica J2 as observed by electron microscopy. It is suggested that several SC components, such as carbohydrate residues, carbohydrate-recognition domains, and a 250-kDa antigen, are involved in P. penetrans spore attachment to the surface of M. javanica.  相似文献   

12.

Background and Aims

Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores.

Methods

Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube.

Key Results

The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes'' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats.

Conclusions

The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.  相似文献   

13.
Spores are the infectious form of Bacillus anthracis (BA), causing cutaneous, inhalation and gastrointestinal anthrax. Because of the possible use of BA spores in a bioterrorism attack, there is considerable interest in studying spore biology. In the laboratory, however, it takes a number of days to prepare spores. Standard sporulation protocols, such as the use of ‘PA broth’, allow sporulation of BA to occur in 3 to 5 days. Another method employs growth of BA on plates in the dark for several days until they have efficiently sporulated. In efforts to determine the effect of iron on gene expression in BA, we grew BA Sterne strain 7702 in a minimal defined medium (CDM; Koppisch et al., 2005) with various concentrations of iron and glucose. As part of our initial observations, we monitored BA sporulation in CDM via light microscopy. In glucose-free CDM containing 1.5 mM Fe(NO3)3 (CDM-Fe), > 95% of the BA sporulated by 30 h; a far shorter time period than expected. We pursued this observation and we further characterized spores derived from PA and CDM-Fe media. Purified spores derived from PA or CDM-Fe had similar morphologies when viewed by light or electron microscopy, and were equally resistant to harsh conditions including heat (65 °C), ice and fresh 30% H2O2. Spore viability in long term cold storage in water was similar for the two spore preparations. Extracted spore coat proteins were evaluated by SDS-PAGE and silver staining, which revealed distinct protein profiles for PA and CDM-Fe spore coat extracts. ELISA assays were done to compare the interaction of the two spore preparations with rabbit antiserum raised against UV-killed Sterne strain 7702 spores prepared in PA medium. Spores from both media reacted identically with this antiserum. Finally, the interaction and fate of spores incubated with macrophages in vitro was very similar. In summary, BA spores induced in CDM-Fe or in PA medium are similar by several criteria, but show distinct extractable coat proteins. CDM-Fe liquid medium can be used for rapid production of BA spores, and could save considerable time in spore research studies.  相似文献   

14.
Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (107 spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3 × 104 spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3 × 105 spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed.  相似文献   

15.
The immobilization of enzymes on edible matrix supports is of great importance for developing stabilized feed enzymes. In this study, probiotic Bacillus spores were explored as a matrix for immobilizing Escherichia coli phytase, a feed enzyme releasing phosphate from phytate. Because Bacillus spore is inherently resistant to heat, solvents and drying, they were expected to be a unique matrix for enzyme immobilization. When mixed with food-grade Bacillus polyfermenticus spores, phytases were adsorbed to their surface and became immobilized. The amount of phytase attached was 28.2 ± 0.7 mg/g spores, corresponding to a calculated activity of 63,960 U/g spores; however, the measured activity was 41,120 ± 990.1 U/g spores, reflecting a loss of activity upon adsorption. Immobilization increased the half life (t1/2) of the enzyme three- to ten-fold at different temperatures ranging from 60 to 90 °C. Phytase was bound to the spore surface to the extent that ultrasonication treatment was not able to detach phytases from spores. Desorption of spore-immobilized phytase was only achieved by treatment with 1 M NaCl, 10% formic acid in 45% acetonitrile, SDS, or urea, suggesting that adsorption of phytase to the spore might be via hydrophobic and electrostatic interactions. We propose here that Bacillus spore is a novel immobilization matrix for enzymes that displays high binding capacity and provides food-grade safety.  相似文献   

16.
In this study, we assessed the stability provided by different formulations to aerial conidia or biomasses (conidia, blastospores, and mycelia) of Beauveria brongniartii and Metarhizium anisopliae subjected to lyophilization. First, the impact of the freezing and drying processes on spore survival was evaluated. Whereas unprotected B. brongniartii spores showed high cryosensitivity, those of M. anisopliae were markedly harmed by the drying process. Then, the protective efficiency of 14 excipients was systematically evaluated and optimized regarding required concentrations. Fructose, glucose, and saccharose significantly enhanced viabilities for B. brongniartii and M. anisopliae spores following lyophilization, especially as a result of their cryoprotective effects. In addition, the effect of various bulking agents on spore survival was studied and dextran 4 was selected to enhance the physical properties of the lyophilized products. The combination of fructose and dextran 4 was further applied to prepare lyophilized biomasses of both fungi. In comparison to freshly harvested biomasses, the lyophilized products showed similar growth rates and a comparable production of virulent secondary metabolites such as destruxin A, destruxin B, or oosporein, suggesting their applicability as biological control agents.  相似文献   

17.
The present study was performed to trace the decisive evidence for mixed infection of 2 Myxobolus species, M. episquamalis and Myxobolus sp., in the gray mullet, Mugil cephalus, from Korean waters. Mullets with whitish cyst-like plasmodia on their scales were collected near a sewage plant in Yeosu, southern part of Korea, in 2009. The cysts were mainly located on scales and also found in the intestine. The spores from scales were oval in a frontal view, tapering anteriorly to a blunt apex, and measured 7.2 µm (5.8-8.0) in length and 5.3 µm (4.7-6.1) in width. Two polar capsules were pyriform and extended over the anterior half of the spore, measuring 3.5 µm (2.3-4.8) in length and 2.0 µm (1.5-2.2) in width. In contrast, the spores from the intestine were ellipsoidal, 10.4 µm (9.0-11.9) in length and 8.4 µm (7.3-10.1) in width. The polar capsules were pyriform but did not extend over the anterior half of the spore, 3.7 µm (2.5-4.5) in length and 2.2 µm (1.8-2.9) in width. The nucleotide sequences of the 18S rDNA gene of the 2 myxosporean spores from scales and intestine showed 88.1% identity to each other and 100% identity with M. episquamalis and 94.5% identity with M. spinacurvatura from mullet, respectively. By the above findings, it is first confirmed that mullets from the Korean water are infected with 2 myxosporean species, M. episquamalis and Myxobolus sp.  相似文献   

18.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

19.
20.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号