首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies of 16S rRNA sequences through next-generation sequencing have revolutionized our understanding of the microbial community composition and structure. One common approach in using these data to explore the genetic diversity in a microbial community is to cluster the 16S rRNA sequences into Operational Taxonomic Units (OTUs) based on sequence similarities. The inferred OTUs can then be used to estimate species, diversity, composition, and richness. Although a number of methods have been developed and commonly used to cluster the sequences into OTUs, relatively little guidance is available on their relative performance and the choice of key parameters for each method. In this study, we conducted a comprehensive evaluation of ten existing OTU inference methods. We found that the appropriate dissimilarity value for defining distinct OTUs is not only related with a specific method but also related with the sample complexity. For data sets with low complexity, all the algorithms need a higher dissimilarity threshold to define OTUs. Some methods, such as, CROP and SLP, are more robust to the specific choice of the threshold than other methods, especially for shorter reads. For high-complexity data sets, hierarchical cluster methods need a more strict dissimilarity threshold to define OTUs because the commonly used dissimilarity threshold of 3% often leads to an under-estimation of the number of OTUs. In general, hierarchical clustering methods perform better at lower dissimilarity thresholds. Our results show that sequence abundance plays an important role in OTU inference. We conclude that care is needed to choose both a threshold for dissimilarity and abundance for OTU inference.  相似文献   

2.
Taxonomy-independent analysis plays an essential role in microbial community analysis. Hierarchical clustering is one of the most widely employed approaches to finding operational taxonomic units, the basis for many downstream analyses. Most existing algorithms have quadratic space and computational complexities, and thus can be used only for small or medium-scale problems. We propose a new online learning-based algorithm that simultaneously addresses the space and computational issues of prior work. The basic idea is to partition a sequence space into a set of subspaces using a partition tree constructed using a pseudometric, then recursively refine a clustering structure in these subspaces. The technique relies on new methods for fast closest-pair searching and efficient dynamic insertion and deletion of tree nodes. To avoid exhaustive computation of pairwise distances between clusters, we represent each cluster of sequences as a probabilistic sequence, and define a set of operations to align these probabilistic sequences and compute genetic distances between them. We present analyses of space and computational complexity, and demonstrate the effectiveness of our new algorithm using a human gut microbiota data set with over one million sequences. The new algorithm exhibits a quasilinear time and space complexity comparable to greedy heuristic clustering algorithms, while achieving a similar accuracy to the standard hierarchical clustering algorithm.  相似文献   

3.
Jiang XT  Zhang H  Sheng HF  Wang Y  He Y  Zou F  Zhou HW 《PloS one》2012,7(1):e30230
Clustering 16S/18S rRNA amplicon sequences into operational taxonomic units (OTUs) is a critical step for the bioinformatic analysis of microbial diversity. Here, we report a pipeline for selecting OTUs with a relatively low computational demand and a high degree of accuracy. This pipeline is referred to as two-stage clustering (TSC) because it divides tags into two groups according to their abundance and clusters them sequentially. The more abundant group is clustered using a hierarchical algorithm similar to that in ESPRIT, which has a high degree of accuracy but is computationally costly for large datasets. The rarer group, which includes the majority of tags, is then heuristically clustered to improve efficiency. To further improve the computational efficiency and accuracy, two preclustering steps are implemented. To maintain clustering accuracy, all tags are grouped into an OTU depending on their pairwise Needleman-Wunsch distance. This method not only improved the computational efficiency but also mitigated the spurious OTU estimation from 'noise' sequences. In addition, OTUs clustered using TSC showed comparable or improved performance in beta-diversity comparisons compared to existing OTU selection methods. This study suggests that the distribution of sequencing datasets is a useful property for improving the computational efficiency and increasing the clustering accuracy of the high-throughput sequencing of PCR amplicons. The software and user guide are freely available at http://hwzhoulab.smu.edu.cn/paperdata/.  相似文献   

4.
In spite of technical advances that have provided increases in orders of magnitude in sequencing coverage, microbial ecologists still grapple with how to interpret the genetic diversity represented by the 16S rRNA gene. Two widely used approaches put sequences into bins based on either their similarity to reference sequences (i.e., phylotyping) or their similarity to other sequences in the community (i.e., operational taxonomic units [OTUs]). In the present study, we investigate three issues related to the interpretation and implementation of OTU-based methods. First, we confirm the conventional wisdom that it is impossible to create an accurate distance-based threshold for defining taxonomic levels and instead advocate for a consensus-based method of classifying OTUs. Second, using a taxonomic-independent approach, we show that the average neighbor clustering algorithm produces more robust OTUs than other hierarchical and heuristic clustering algorithms. Third, we demonstrate several steps to reduce the computational burden of forming OTUs without sacrificing the robustness of the OTU assignment. Finally, by blending these solutions, we propose a new heuristic that has a minimal effect on the robustness of OTUs and significantly reduces the necessary time and memory requirements. The ability to quickly and accurately assign sequences to OTUs and then obtain taxonomic information for those OTUs will greatly improve OTU-based analyses and overcome many of the challenges encountered with phylotype-based methods.  相似文献   

5.
6.
DNA metabarcoding is a promising method for describing communities and estimating biodiversity. This approach uses high‐throughput sequencing of targeted markers to identify species in a complex sample. By convention, sequences are clustered at a predefined sequence divergence threshold (often 3%) into operational taxonomic units (OTUs) that serve as a proxy for species. However, variable levels of interspecific marker variation across taxonomic groups make clustering sequences from a phylogenetically diverse dataset into OTUs at a uniform threshold problematic. In this study, we use mock zooplankton communities to evaluate the accuracy of species richness estimates when following conventional protocols to cluster hypervariable sequences of the V4 region of the small subunit ribosomal RNA gene (18S) into OTUs. By including individually tagged single specimens and “populations” of various species in our communities, we examine the impact of intra‐ and interspecific diversity on OTU clustering. Communities consisting of single individuals per species generated a correspondence of 59–84% between OTU number and species richness at a 3% divergence threshold. However, when multiple individuals per species were included, the correspondence between OTU number and species richness dropped to 31–63%. Our results suggest that intraspecific variation in this marker can often exceed 3%, such that a single species does not always correspond to one OTU. We advocate the need to apply group‐specific divergence thresholds when analyzing complex and taxonomically diverse communities, but also encourage the development of additional filtering steps that allow identification of artifactual rRNA gene sequences or pseudogenes that may generate spurious OTUs.  相似文献   

7.
Mass peak alignment (ion-wise alignment) has recently become a popular method for unsupervised data analysis in untargeted metabolic profiling. Here we present MSClust-a software tool for analysis GC-MS and LC-MS datasets derived from untargeted profiling. MSClust performs data reduction using unsupervised clustering and extraction of putative metabolite mass spectra from ion-wise chromatographic alignment data. The algorithm is based on the subtractive fuzzy clustering method that allows unsupervised determination of a number of metabolites in a data set and can deal with uncertain memberships of mass peaks in overlapping mass spectra. This approach is based purely on the actual information present in the data and does not require any prior metabolite knowledge. MSClust can be applied for both GC-MS and LC-MS alignment data sets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0368-2) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background  

There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that are often generated by high throughput experiments.  相似文献   

9.
10.
A heuristic approach to search for the maximum-likelihood (ML) phylogenetic tree based on a genetic algorithm (GA) has been developed. It outputs the best tree as well as multiple alternative trees that are not significantly worse than the best one on the basis of the likelihood criterion. These near-optimum trees are subjected to further statistical tests. This approach enables ones to infer phylogenetic trees of over 20 taxa taking account of the rate heterogeneity among sites on practical time scales on a PC cluster. Computer simulations were conducted to compare the efficiency of the present approach with that of several likelihood-based methods and distance-based methods, using amino acid sequence data of relatively large (5–24) taxa. The superiority of the ML method over distance-based methods increases as the condition of simulations becomes more realistic (an incorrect model is assumed or many taxa are involved). This approach was applied to the inference of the universal tree based on the concatenated amino acid sequences of vertically descendent genes that are shared among all genomes whose complete sequences have been reported. The inferred tree strongly supports that Archaea is paraphyletic and Eukarya is specifically related to Crenarchaeota. Apart from the paraphyly of Archaea and some minor disagreements, the universal tree based on these genes is largely consistent with the universal tree based on SSU rRNA. Received: 4 January 2001 / Accepted: 16 May 2001  相似文献   

11.
MOTIVATION: With the advancements of next-generation sequencing technology, it is now possible to study samples directly obtained from the environment. Particularly, 16S rRNA gene sequences have been frequently used to profile the diversity of organisms in a sample. However, such studies are still taxed to determine both the number of operational taxonomic units (OTUs) and their relative abundance in a sample. RESULTS: To address these challenges, we propose an unsupervised Bayesian clustering method termed Clustering 16S rRNA for OTU Prediction (CROP). CROP can find clusters based on the natural organization of data without setting a hard cut-off threshold (3%/5%) as required by hierarchical clustering methods. By applying our method to several datasets, we demonstrate that CROP is robust against sequencing errors and that it produces more accurate results than conventional hierarchical clustering methods. Availability and Implementation: Source code freely available at the following URL: http://code.google.com/p/crop-tingchenlab/, implemented in C++ and supported on Linux and MS Windows.  相似文献   

12.
The effect of change of number of OTU’s (operational taxonomic units) in a numerical taxonomic study was investigated using 28 taxospecies of the genusSalix in California and 22 sites of sect.Sitchenses of the genus. A coefficient of Euclidean distance was used to estimate relationships among the OTU’s based on 99 morphological characters. Two methods of clustering were employed: 1) Tryon’s key communality cluster analysis, and 2) the unweighted pair group method. The latter results in a phenogram. It was found that the number of OTU’s employed does make a difference. But the difference is not random and is centered around those OTU’s most closely related to the OTU’s being added.  相似文献   

13.
Ensemble clustering methods have become increasingly important to ease the task of choosing the most appropriate cluster algorithm for a particular data analysis problem. The consensus clustering (CC) algorithm is a recognized ensemble clustering method that uses an artificial intelligence technique to optimize a fitness function. We formally prove the existence of a subspace of the search space for CC, which contains all solutions of maximal fitness and suggests two greedy algorithms to search this subspace. We evaluate the algorithms on two gene expression data sets and one synthetic data set, and compare the result with the results of other ensemble clustering approaches.  相似文献   

14.
Large amount of population-scale genetic variation data are being collected in populations. One potentially important biological problem is to infer the population genealogical history from these genetic variation data. Partly due to recombination, genealogical history of a set of DNA sequences in a population usually cannot be represented by a single tree. Instead, genealogy is better represented by a genealogical network, which is a compact representation of a set of correlated local genealogical trees, each for a short region of genome and possibly with different topology. Inference of genealogical history for a set of DNA sequences under recombination has many potential applications, including association mapping of complex diseases. In this paper, we present two new methods for reconstructing local tree topologies with the presence of recombination, which extend and improve the previous work in. We first show that the "tree scan" method can be converted to a probabilistic inference method based on a hidden Markov model. We then focus on developing a novel local tree inference method called RENT that is both accurate and scalable to larger data. Through simulation, we demonstrate the usefulness of our methods by showing that the hidden-Markov-model-based method is comparable with the original method in terms of accuracy. We also show that RENT is competitive with other methods in terms of inference accuracy, and its inference error rate is often lower and can handle large data.  相似文献   

15.
Haplotype information plays an important role in many genetic analyses. However, the identification of haplotypes based on sequencing methods is both expensive and time consuming. Current sequencing methods are only efficient to determine conflated data of haplotypes, that is, genotypes. This raises the need to develop computational methods to infer haplotypes from genotypes.Haplotype inference by pure parsimony is an NP-hard problem and still remains a challenging task in bioinformatics. In this paper, we propose an efficient ant colony optimization (ACO) heuristic method, named ACOHAP, to solve the problem. The main idea is based on the construction of a binary tree structure through which ants can travel and resolve conflated data of all haplotypes from site to site. Experiments with both small and large data sets show that ACOHAP outperforms other state-of-the-art heuristic methods. ACOHAP is as good as the currently best exact method, RPoly, on small data sets. However, it is much better than RPoly on large data sets. These results demonstrate the efficiency of the ACOHAP algorithm to solve the haplotype inference by pure parsimony problem for both small and large data sets.  相似文献   

16.
通过不同的聚类方式,对公共数据库中生物序列数据进行生物信息的挖掘,以达到在更广泛和更深入的框架中了解它们之间的相互关系的目的。以帕金森病相关基因所对应的mRNA序列为例,使用双序列比对的得分值作为序列之间的距离定义。同时为解决不同聚类分析之间的差异,分别采用模糊聚类和层次聚类两种不同的方法进行聚类分析。并由不同聚类方法得到的一致分类聚类的结果为基因功能分类提供支持,为进一步揭示生物序列所蕴涵的生物学知识和生物学规律提供可参考的依据。  相似文献   

17.
Oligonucleotide fingerprinting is a powerful DNA array-based method to characterize cDNA and ribosomal RNA gene (rDNA) libraries and has many applications including gene expression profiling and DNA clone classification. We are especially interested in the latter application. A key step in the method is the cluster analysis of fingerprint data obtained from DNA array hybridization experiments. Most of the existing approaches to clustering use (normalized) real intensity values and thus do not treat positive and negative hybridization signals equally (positive signals are much more emphasized). In this paper, we consider a discrete approach. Fingerprint data are first normalized and binarized using control DNA clones. Because there may exist unresolved (or missing) values in this binarization process, we formulate the clustering of (binary) oligonucleotide fingerprints as a combinatorial optimization problem that attempts to identify clusters and resolve the missing values in the fingerprints simultaneously. We study the computational complexity of this clustering problem and a natural parameterized version and present an efficient greedy algorithm based on MINIMUM CLIQUE PARTITION on graphs. The algorithm takes advantage of some unique properties of the graphs considered here, which allow us to efficiently find the maximum cliques as well as some special maximal cliques. Our preliminary experimental results on simulated and real data demonstrate that the algorithm runs faster and performs better than some popular hierarchical and graph-based clustering methods. The results on real data from DNA clone classification also suggest that this discrete approach is more accurate than clustering methods based on real intensity values in terms of separating clones that have different characteristics with respect to the given oligonucleotide probes.  相似文献   

18.
19.
Rare taxa overwhelm metabarcoding data generated using next-generation sequencing (NGS). Low frequency Operational Taxonomic Units (OTUs) may be artifacts generated by PCR-amplification errors resulting from polymerase mispairing. We analyzed two Internal Transcribed Spacer 2 (ITS2) MiSeq libraries generated with proofreading (ThermoScientific Phusion®) and non-proofreading (ThermoScientific Phire®) polymerases from the same MiSeq reaction, the same samples, using the same DNA tags, and with two different clustering methods to evaluate the effect of polymerase and clustering tool choices on the estimates of richness, diversity and community composition. Our data show that, while the overall communities are comparable, OTU richness is exaggerated by the use of the non-proofreading polymerase–up to 15 % depending on the clustering method, and on the threshold of low frequency OTU removal. The overestimation of richness also consistently led to underestimation of community evenness, a result of increase in the low frequency OTUs. Stringent thresholds of eliminating the rare reads remedy this issue; exclusion of reads that occurred ≤10 times reduced overestimated OTU numbers to <0.3 %. As a result of these findings, we strongly recommend the use of proofreading polymerases to improve the data integrity as well as the use of stringent culling thresholds for rare sequences to minimize overestimation of community richness.  相似文献   

20.
Cluster analysis has proven to be a valuable statistical method for analyzing whole genome expression data. Although clustering methods have great utility, they do represent a lower level statistical analysis that is not directly tied to a specific model. To extend such methods and to allow for more sophisticated lines of inference, we use cluster analysis in conjunction with a specific model of gene expression dynamics. This model provides phenomenological dynamic parameters on both linear and non-linear responses of the system. This analysis determines the parameters of two different transition matrices (linear and nonlinear) that describe the influence of one gene expression level on another. Using yeast cell cycle microarray data as test set, we calculated the transition matrices and used these dynamic parameters as a metric for cluster analysis. Hierarchical cluster analysis of this transition matrix reveals how a set of genes influence the expression of other genes activated during different cell cycle phases. Most strikingly, genes in different stages of cell cycle preferentially activate or inactivate genes in other stages of cell cycle, and this relationship can be readily visualized in a two-way clustering image. The observation is prior to any knowledge of the chronological characteristics of the cell cycle process. This method shows the utility of using model parameters as a metric in cluster analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号