首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Coxiella burnetii, an obligate intracellular bacterium of worldwide distribution, is responsible for Q fever. Domestic ruminants are the main source of infection for humans. The objectives of this study were to determine (1) whether C. burnetii would adhere to the intact zona pellucida (ZP-intact) of early in vitro–produced bovine embryos; (2) whether the bacteria would adhere to or infect the embryos (ZP-free) after in vitro infection; and (3) the efficacy of the International Embryo Transfer Society (IETS) washing protocol. One hundred and sixty, eight- to 16-cell bovine embryos produced in vitro, were randomly divided into 16 batches of 10 embryos. Twelve batches (eight ZP-intact and four ZP-free) were incubated in a medium containing C. burnetii CbB1 (Infectiologie Animale et Santé Publique, Institut National de Recherche Agronomique Tours, France). After 18 hours of incubation at 37 °C and 5% CO2 in air, the embryos were washed in 10 successive baths of a PBS and 5% fetal calf serum solution in accordance with the IETS guidelines. In parallel, four batches (two ZP-intact and two ZP-free) were subjected to similar procedures but without exposure to C. burnetii to act as controls. Ten washing fluids from each batch were collected and centrifuged for 1 hour at 13,000× g. The embryos and wash pellets were tested using conventional polymerase chain reaction. C. burnetii DNA was found in all ZP-intact and ZP-Free embryos after 10 successive washes. It was also detected in the first four washing fluids for ZP-intact embryos and in the 10th wash fluid for two of the four batches of ZP-free embryos. In contrast, none of the embryos or their washing fluids in the control batches were DNA positive. These results demonstrate that Cburnetii adheres to and/or penetrates the early embryonic cells and the ZP of in vitro bovine embryos after in vitro infection, and that the standard washing protocol recommended by the IETS for bovine embryos, failed to remove it. The persistence of these bacteria after washing makes the embryo a potential means of transmission of the bacterium during embryo transfer from infected donor cows to healthy recipients and/or their offspring. Further studies are required to investigate whether enzymatic and/or antibiotic treatment of bovine embryos infected by C. burnetii would eliminate the bacteria from the ZP and to verify if similarly results are obtained with in vivo–derived embryos.  相似文献   

2.
The application of strand displacement amplification (SDA) is demonstrated for whole genome amplification from nanograms to micrograms for DNA isolated from small plant cell colonies. Secondary digest amplified fragment length polymorphism (SD-AFLP) analysis confirmed that the amplified genome is a representative of the entire genome. This approach allows the amplification of DNA isolated from small cell colonies of putative somatic hybrids for rapid molecular confirmation of the hybrid status of fusion products.  相似文献   

3.
Comprehensive genomic molecular analyses require relatively large DNA amounts that are often not available from forensic, clinical and other crucial biological samples. Numerous methods to amplify the whole genome have been proposed for cancer, forensic and taxonomic research. Unfortunately, when using truly random primers for the initial priming step, all of these procedures suffer from high background problems for sub-nanogram quantities of input DNA. Here we report an approach to eliminate this problem for PCR-based methods even at levels of DNA approaching that of a single cell.  相似文献   

4.
Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS.  相似文献   

5.
Genetic characterization of field isolates and clinical specimens of filarial nematodes is often limited by a shortage of DNA; therefore, we evaluated a multiple displacement amplification (MDA) based whole genome amplification method. The quality of amplified DNA was examined by conventional PCR, real-time PCR, and DNA hybridization. MDA of 5.0 ng of adult Brugia malayi DNA and one-fifteenth of the DNA isolated from a single microfilaria resulted in 6.3 and 4.2 μg of amplified DNA, respectively. Amplified DNA was equivalent to native genomic DNA for hybridization to B. malayi BAC library clones or to an oligonucleotide microarray with approximately 18,000 filarial DNA sequences. MDA is useful for whole genome amplification of filarial DNA from very small amounts of starting material. This technology will permit detailed studies of genetic diversity that were not previously feasible.  相似文献   

6.
Abstract

When cytobrush buccal cell samples have been collected as a genomic DNA (gDNA) source for an epidemiological study, whole genome amplification (WGA) can be critical to maintain sufficient DNA for genotyping. We evaluated REPLI-g? WGA using gDNA from two paired cytobrushes (cytobush ‘A’ kept in a cell lysis buffer, and ‘B’ dried and kept at room temperature for 3 days, and frozen until DNA extraction) in a pilot study (n=21), and from 144 samples collected by mail in a breast cancer study. WGA success was assessed as the per cent completion/concordance of STR/SNP genotypes. Locus amplification bias was assessed using quantitative PCR of 23 human loci. The pilot study showed > 98% completion but low genotype concordance between cytobrush wgaDNA and paired blood gDNA (82% and 84% for cytobrushes A and B, respectively). Substantial amplification bias was observed with significantly lower human gDNA amplification from cytobrush B than A. Using cytobrush gDNA samples from the breast cancer study (n =20), an independent laboratory demonstrated that increasing template gDNA to the REPLI-g reaction improved genotype performance for 49 SNPs; however, average completion and concordance remained below 90%. To reduce genotype misclassification when cytobrush wgaDNA is used, inclusion of paired gDNA/wgaDNA and/or duplicate wgaDNA samples is critical to monitor data quality.  相似文献   

7.
Amplifying microbial DNA by the polymerase chain reaction (PCR) from single phytoseiid mites has been difficult, perhaps due to the low titer of bacteria and to interference by the relatively larger amounts of mite genomic DNA. In this paper we evaluate the efficiency of standard and high-fidelity PCR protocols subsequent to amplification of the whole genome by a multiple displacement amplification (MDA) procedure developed by Dean et al. DNA from the phytoseiid Phytoseiulus persimilis (Athias-Henriot) was tested because it lacks a Cytophaga-like organism (CLO) and we could add known amounts of a plasmid containing a cloned 16S rRNA gene fragment from a CLO from Metaseiulus occidentalis (Nesbitt). P. persimilis genomic DNA was mixed with the serially diluted plasmid and amplified using MDA followed by either standard or high-fidelity PCR. MDA followed by high-fidelity PCR was most efficient and successfully amplified an expected 1.5-kb band from as little as 0.01fg of the plasmid, which is equivalent to about 1 copy. MDA followed by high-fidelity PCR also consistently amplified Wolbachia- or CLO-specific products from naturally infected single females or eggs of M. occidentalis, which will allow detailed studies of infection frequency and transmission of several microorganisms associated with this predatory mite.  相似文献   

8.
Deep infections by melanized fungi deserve special attention because of a potentially fatal, cerebral or disseminated course of disease in otherwise healthy patients. Timely diagnostics are a major problem with these infections. Rolling circle amplification (RCA) is a sensitive, specific and reproducible isothermal DNA amplification technique for rapid molecular identification of microorganisms. RCA-based diagnostics are characterized by good reproducibility, with few amplification errors compared to PCR. The method is applied here to species of Exophiala known to cause systemic infections in humans. The ITS rDNA region of five Exophiala species (E. dermatitidis, E. oligosperma, E. spinifera, E. xenobiotica, and E. jeanselmei) was sequenced and aligned in view of designing specific padlock probes to be used for the detection of single nucleotide polymorphisms (SNPs) of the Exophiala species concerned. The assay proved to successfully amplify DNA of the target fungi at the level of species; while no cross-reactivity was observed. Amplification products were visualized on 1% agarose gels to verify the specificity of probe-template binding. Amounts of reagents were minimized to avoid the generation of false positive results. The sensitivity of RCA may help to improve early diagnostics of these difficult to diagnose infections.  相似文献   

9.
Genetic analysis of arbuscular mycorrhizal (AM) fungi relies on analysis of single spores. The low DNA content makes it difficult to perform large scale molecular analysis. We present the application of Phi29 DNA polymerase mediated strand displacement amplification (SDA) to genomic DNA extracted from single spores of Glomus and Gigaspora species to address this problem. The genome coverage of the SDA process was evaluated by PCR amplification of the beta-tubulin1 gene and part of the rDNA cluster present in AM fungi. The fidelity of SDA was evaluated further by sequencing the Glomus intraradices ITS1 variants to detect the four ITS1 variants previously identified for this fungus.  相似文献   

10.
Chen L  Zhang H H 《农业工程》2012,32(5):232-239
The complete mitochondrial genome sequence of the raccoon dog (Nyctereutes procyonoides) was determined by using the long and accurate polymerase chain reaction. The entire mitochondrial genome sequence is 16,713 bp in length contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 control region. Most mitochondrial genes are encoded on the H strand, except for the ND6 gene and 8 tRNA genes. The base compositions of mitochondrial genomes present clearly A–T skew. All the transfer RNA genes can be folded into the typical cloverleaf-shaped structure except tRNA-Ser (AGY), which lacks the dihydrouridine arm. Protein-coding genes mainly initiate with ATG and terminate with TAA. Some reading frame intervals and overlaps are found in the mitochondrial genome. The control region can be divided into three domains: the extended termination associated sequences (ETASs) domain, the central conserved domain and the conserved sequence blocks (CSBs) domain. Three conserved sequence blocks (CSBs) and one extended termination associated sequences (ETAS-1) is found in the control region. The phylogenetic analysis based on the concatenated data set of 14 genes in the mitochondrial genome of Canidae shows that the raccoon dog has close phylogenetic position with the red fox (Vulpes vulpes) and they constitute a clade which has an equil evolutionary position with the clade formed by the genera Canis and Cuon.  相似文献   

11.
We developed and optimized a method using Chelex DNA extraction followed by whole genome amplification (WGA) to overcome problems conducting molecular genetic studies due to the limited amount of DNA obtainable from individual small organisms such as predatory mites. The DNA from a single mite, Phytoseiulus persimilis Athias-Henrot (Acari: Phytoseiidae), isolated in Chelex suspension was subjected to WGA. More than 1000-fold amplification of the DNA was achieved using as little as 0.03 ng genomic DNA template. The DNA obtained by the WGA was used for polymerase chain reaction followed by direct sequencing. From WGA DNA, nuclear DNA intergenic spacers ITS1 and ITS2 and a mitochondrial DNA 12S marker were tested in three different geographical populations of the predatory mite: California, the Netherlands, and Sicily. We found a total of four different alleles of the 12S in the Sicilian population, but no polymorphism was identified in the ITS marker. The combination of Chelex DNA extraction and WGA is thus shown to be a simple and robust technique for examining molecular markers for multiple loci by using individual mites. We conclude that the methods, Chelex extraction of DNA followed by WGA, provide a large quantity of DNA template that can be used for multiple PCR reactions useful for genetic studies requiring the genotypes of individual mites.  相似文献   

12.
13.
Mutator (Mu) is by far the most mutagenic plant transposon. The high frequency of transposition and the tendency to insert into low copy sequences for such transposon have made it the primary means by which genes are mutagenized in maize (Zea mays L.). Mus like elements (MULEs) are widespread among angiosperms and multiple-diverged functional variants can be present in a single genome. MULEs often capture genetic sequences. These Pack-MuLEs can mobilize thousands of gene fragments, which may have had a significant impact on host genome evolution. There is also evidence that MULEs can move between reproductively isolated species. Here we present an overview of the discovery, features and utility of Mu transposon. Classification of Mu elements and future directions of related research are also discussed. Understanding Mu will help us elucidate the dynamic genome.  相似文献   

14.
15.
The isolation and multiple genotyping of long individual DNA fragments are needed to obtain haplotype information for diploid organisms. Limiting dilution of sample DNA followed by multiple displacement amplification is a useful technique but is restricted to short (<5 kb) DNA fragments. In the current study, a novel modification was applied to overcome these problems. A limited amount of cellular DNA was carefully released from intact cells into a mildly heated alkaline agarose solution and mixed thoroughly. The solution was then gently aliquoted and allowed to solidify while maintaining the integrity of the diluted DNA. Exogenously provided Phi29 DNA polymerase was used to perform consistent genomic amplification with random hexameric oligonucleotides within the agarose gels. Simple heat melting of the gel allowed recovery of the amplified materials in a solution of the polymerase chain reaction (PCR)-ready form. The haplotypes of seven SNPs spanning 240 kb of the DNA surrounding the human ATM gene region on chromosome 11 were determined for 10 individuals, demonstrating the feasibility of this new method.  相似文献   

16.
Entomophthoralean fungus Pandora nouryi is an obligate aphid pathogen that enables to produce resting spores (azygospores) for surviving host absence. To explore possible mechanisms involved in the regulation of resting spore formation in vivo, host cohorts consisting of 40-60 nymphs of green peach aphid Myzus persicae produced within 24 h on cabbage leaf discs in petri dishes were exposed to spore showers of P. nouryi at the concentrations (C) from a very few to nearly 2000 conidia/mm2 and then reared for 7-11 days at the regimes of 10-25 °C (T) and 8-16 h daylight (HL) or ambient (17.5 ± 3.1 °C, 13:11 L:D). Aphid mortalities observed from 35-83 cohorts (showered separately) at each regime showed typical sigmoid trend and fit well a general logistic equation (0.79 ? r2 ? 0.88), yielding similar LC50 estimates of 1.7-6.1 conidia/mm2. The proportions (P) of cadavers forming resting spores in the cohorts also fit the same equation (0.73 ? r2 ? 0.85) at all tested regimes except at 10 °C, a low temperature for the host-pathogen interaction. This indicates the dependence of resting spore formation on the spore concentration. The effects of T and HL on P over C were well elucidated by the fitted modified logistic equations = 0.578/{1 + exp[1.710 − (0.136 − 0.0053T)C]} and = 0.534/{1 + exp[1.639 + (0.034 − 0.0053HL)C]} (both r2 = 0.79). Our results highlight that the resting spore formation in vivo of P. nouryi is regulated primarily by the concentration of host-infecting conidia discharged from cadavers and facilitated by lower temperature and longer daylight.  相似文献   

17.
We assessed the whole genome amplification strategy, known as multiple displacement amplification (MDA), for use with the TaqMan genotyping platform for DNA samples derived from two case-control studies nested in the Nurses' Health Study and the Physicians' Health Study. Our objectives were to (1) quantify DNA yield from samples of varying starting concentrations and (2) assess whether MDA products give an accurate representation of the original genomic sequence. Multiple displacement amplification yielded a mean 23000-fold increase in DNA quantity and genotyping results demonstrate 99.95% accuracy across six SNPs from four genes for 352 samples included in this study. These results suggest that MDA will provide a sufficiently robust amplification of limiting samples of genomic DNA that can be used for SNP genotyping in large case-control studies of complex diseases.  相似文献   

18.
Evidentiary items sometimes contain an insufficient quantity of DNA for routine forensic genetic analysis. These so-called low copy number DNA samples (< 100 pg of genomic DNA) often fall below the sensitivity limitations of routine DNA analysis methods. Theoretically, one way of making such intractable samples amenable to analysis would be to increase the number of starting genomes available for subsequent STR (short tandem repeat) analysis by a whole genome amplification strategy (WGA). Although numerous studies employing WGA have focused primarily on clinical applications, few in-depth studies have been conducted to evaluate the potential usefulness of these methods in forensic casework. After an initial evaluation of existing methods, a modified WGA strategy was developed that appears to have utility for low copy number forensic casework specimens. The method employs a slight, but important, modification of the "improved primer extension preamplification PCR" method (I-PEP-PCR), which we term mIPEP (modified-I-PEP-PCR). Complete autosomal STR and Y-STR (Y chromosome short tandem repeat) profiles were routinely obtained with 5 pg of template DNA, which is equivalent to 1-2 diploid cells. Remarkably, partial Y- and autosomal STR profiles were obtained from mIPEP-treated DNA recovered from bloodstains exposed to the outside environment for 1 year whereas non-mIPEP-treated samples did not produce profiles. STR profiles were obtained from contact DNA from single dermal ridge fingerprints when the DNA was subjected to prior mIPEP amplification but not when the mIPEP step was omitted.  相似文献   

19.

Background

Enteroaggregative Haemorrhagic E. coli (EAHEC) is a new pathogenic group of E. coli characterized by the presence of a vtx2-phage integrated in the genomic backbone of Enteroaggregative E. coli (EAggEC). So far, four distinct EAHEC serotypes have been described that caused, beside the large outbreak of infection occurred in Germany in 2011, a small outbreak and six sporadic cases of HUS in the time span 1992–2012. In the present work we determined the whole genome sequence of the vtx2-phage, termed Phi-191, present in the first described EAHEC O111:H2 isolated in France in 1992 and compared it with those of the vtx-phages whose sequences were available.

Results

The whole genome sequence of the Phi-191 phage was identical to that of the vtx2-phage P13374 present in the EAHEC O104:H4 strain isolated during the German outbreak 20 years later. Moreover, it was also almost identical to those of the other vtx2-phages of EAHEC O104:H4 strains described so far. Conversely, the Phi-191 phage appeared to be different from the vtx2-phage carried by the EAHEC O111:H21 isolated in the Northern Ireland in 2012.The comparison of the vtx2-phages sequences from EAHEC strains with those from the vtx-phages of typical Verocytotoxin-producing E. coli strains showed the presence of a 900 bp sequence uniquely associated with EAHEC phages and encoding a tail fiber.

Conclusions

At least two different vtx2-phages, both characterized by the presence of a peculiar tail fiber-coding gene, intervened in the emergence of EAHEC. The finding of an identical vtx2-phage in two EAggEC strains isolated after 20 years in spite of the high variability described for vtx-phages is unexpected and suggests that such vtx2-phages are kept under a strong selective pressure.The observation that different EAHEC infections have been traced back to countries where EAggEC infections are endemic and the treatment of human sewage is often ineffective suggests that such countries may represent the cradle for the emergence of the EAHEC pathotype. In these regions, EAggEC of human origin can extensively contaminate the environment where they can meet free vtx-phages likely spread by ruminants excreta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-574) contains supplementary material, which is available to authorized users.  相似文献   

20.
In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号