首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Donor leukocytes play a dual role in rejection and acceptance of transplanted organs. They provide the major stimulus for rejection, and their removal from the transplanted organ prolongs its survival. Paradoxically, administration of donor leukocytes also prolongs allograft survival provided that they are administered 1 wk or more before transplantation. Here we show that administration of donor leukocytes immediately after transplantation induced long-term acceptance of completely MHC-mismatched rat kidney or liver transplants. The majority of long-term recipients of kidney transplants were tolerant of donor-strain skin grafts. Acceptance was associated with early activation of recipient T cells in the spleen, demonstrated by a rapid increase in IL-2 and IFN-gamma at that site followed by an early diffuse infiltrate of activated T cells and apoptosis within the tolerant grafts. In contrast, IL-2 and IFN-gamma mRNA were not increased in the spleens of rejecting animals, and the diffuse infiltrate of activated T cells appeared later but resulted in rapid graft destruction. These results define a mechanism of allograft acceptance induced by donor leukocytes that is associated with activation-induced cell death of recipient T cells. They demonstrate for the first time that posttransplant administration of donor leukocytes leads to organ allograft tolerance across a complete MHC class I plus class II barrier, a finding with direct clinical application.  相似文献   

2.
Treatment with a 2-week course of anti-CD154 antibody and a single transfusion of donor leukocytes (a donor-specific transfusion or DST) permits skin allografts to survive for >100 days in thymectomized mice. As clinical trials of this methodology in humans are contemplated, concern has been expressed that viral infection of graft recipients may disrupt tolerance to the allograft. We report that acute infection with lymphocytic choriomeningitis virus (LCMV) induced allograft rejection in mice treated with DST and anti-CD154 antibody if inoculated shortly after transplantation. Isografts resisted LCMV-induced rejection, and the interferon-inducing agent polyinosinic:polycytidylic acid did not induce allograft rejection, suggesting that the effect of LCMV is not simply a consequence of nonspecific inflammation. Administration of anti-CD8 antibody to engrafted mice delayed LCMV-induced allograft rejection. Pichinde virus also induced acute allograft rejection, but murine cytomegalovirus and vaccinia virus (VV) did not. Injection of LCMV approximately 50 days after tolerance induction and transplantation had minimal effect on subsequent allograft survival. Treatment with DST and anti-CD154 antibody did not interfere with clearance of LCMV, but a normally nonlethal high dose of VV during tolerance induction and transplantation killed graft recipients. We conclude that DST and anti-CD154 antibody induce a tolerant state that can be broken shortly after transplantation by certain viral infections. Clinical application of transplantation tolerance protocols may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

3.
The induction of mixed chimerism (MC) is a powerful and effective means to achieve transplantation tolerance in rodent models. Host conditioning with irradiation or cytotoxic drugs has been used in many protocols for chimeric induction across allogeneic barriers. The deletion of alloreactive T cell clones has been described as the main mechanism responsible for the induction of a stable MC. In this study, we demonstrate that a stable MC and skin allograft tolerance can be established across MHC barriers by a noncytotoxic, irradiation-free approach using costimulation blockade plus rapamycin treatment. By using an adoptive transfer model of skin allograft and using specific Vbeta TCR probes, we demonstrated that deletion of donor-reactive cytopathic T cell clones is indeed profound in tolerant hosts. Nonetheless, the challenge of tolerant mixed chimeras with 5 million mononuclear leukocytes (MNL) from naive syngeneic mice was neither able to abolish the stable MC nor to trigger skin allograft rejection, a hallmark of peripheral, not central tolerance. Furthermore, in an adoptive transfer model, MNLs harvested from tolerant hosts significantly inhibited the capacity of naive MNLs to reject same donor, but not third-party, skin allografts. Moreover, when we transplanted skin allografts from stable tolerant chimeras onto syngeneic immune-incompetent mice, graft-infiltrating T cells migrated from the graft site, expanded in the new host, and protected allografts from acute rejection by naive syngeneic MNLs. In this model, both deletional and immunoregulatory mechanisms are active during the induction and/or maintenance of allograft tolerance through creation of MC using a potentially clinically applicable regimen.  相似文献   

4.
Neuropeptide Y (NPY), a classical sympathetic comediator, regulates immunological functions including T cell activation and migration of blood leukocytes. A NPY-mediated neuroimmune cross-talk is well conceivable in sympathetically innervated tissues. In denervated, e.g., transplanted organs, however, leukocyte function is not fundamentally disturbed. Thus, we hypothesized that NPY is expressed by blood leukocytes themselves and regulated during inflammation. NPY mRNA and peptide expression were analyzed in mononuclear leukocytes isolated from the blood vessels of healthy rat kidneys, as well as from the blood vessels of isogeneic and allogeneic renal grafts transplanted in the Dark Agouti to Lewis or in the Fischer 344 to Lewis rat strain combination. Depending on the donor strain, acute allograft rejection is either fatal or reversible but both experimental models are characterized by massive accumulation of intravascular leukocytes. Leukocytes, predominantly monocytes, isolated from the blood vessels of untreated kidneys and isografts expressed high amounts of NPY mRNA and peptide, similar to expression levels in sympathetic ganglia. During acute allograft rejection, leukocytic NPY expression drastically dropped to approximately 1% of control levels in both rat strain combinations. In conclusion, NPY is an abundantly produced and tightly regulated cytokine of mononuclear blood leukocytes.  相似文献   

5.
Major histocompatibility complex (MHC)-homozygous Xenopus laevis were rendered tolerant to semi-allogeneic antigens by grafting skins of adult frogs during larval stages (larvally induced tolerance), and this tolerant state was compared with the tolerance induced in early thymectomized frogs by the grafting of semi-allogeneic nonlymphoid thymuses (thymus-reconstituted tolerance). In contrast to a total inability of thymus-reconstituted frogs both to reject skins and to exhibit a mixed leukocyte reaction (MLR) against the semi-allogeneic donor, larvally induced tolerant frogs showed a strong MLR against leukocytes of the tolerizing skin donor (split tolerance). Breakdown of the tolerant state in thymus-reconstituted frogs were easily accomplished by inoculation with syngeneic splenocytes, but this breakdown was extremely difficult to achieve in frogs with larvally induced tolerance. The injection of splenocytes from larvally induced tolerant frogs into normal frogs significantly suppressed semi-allogeneic graft rejection in the latter group; no suppression was obtained when splenocytes from thymus-reconstituted frogs were used. In addition, in the thymectomized frogs, recovery of allograft rejection capacity against the pertinent semi-allogeneic antigens were suppressed by the injection of splenocytes from larvally induced tolerant frogs, with the degree of suppression depending on the splenocyte dose. These results indicate that the larvally induced tolerant state is maintained by specifically induced suppressor cells affecting the in vivo allograft response but not the MLR.  相似文献   

6.
With an organ transplant, hematopoietic donor cells are transferred to the recipient. To study the relevance of the resulting microchimerism for allograft acceptance, we analyzed a rat model of cyclosporine-induced tolerance for strongly incompatible heart allografts. Using a monoclonal antibody that detects a donor-specific CD45 allotype (RT7a), we selectively depleted donor leukocytes at different times after transplantation (days 0 or 18). Depletion was similarly effective at both times. However, only depletion on day 0 prevented tolerance induction and was associated with severe acute or chronic graft rejection. This indicates that passenger leukocytes have an essential immunomodulatory effect on the induction phase of allograft acceptance.  相似文献   

7.
Approaches that prevent acute rejection of renal transplants in a rhesus monkey model were studied to determine a common mechanism of acceptance. After withdrawal of immunosuppression, all 14 monkeys retained normal allograft function for >6 mo. Of these, nine rejected their renal allograft during the study, and five maintained normal function throughout the study period. The appearance of TGF-beta 1(+) interstitial mononuclear cells in the graft coincided with a nonrejection histology, whereas the absence/disappearance of these cells was observed with the onset of rejection. Analysis with a variety of TGF-beta 1-reactive Abs indicated that the tolerance-associated infiltrates expressed the large latent complex form of TGF-beta 1. Peripheral leukocytes from rejecting monkeys lacking TGF-beta 1(+) allograft infiltrates responded strongly to donor Ags in delayed-type hypersensitivity trans-vivo assays. In contrast, allograft acceptors with TGF-beta 1(+) infiltrates demonstrated a much weaker peripheral delayed-type hypersensitivity response to donor alloantigens (p < 0.01 vs rejectors), which could be restored by Abs that either neutralized active TGF-beta 1 or blocked its conversion from latent to active form. Anti-IL-10 Abs had no restorative effect. Accepted allografts had CD8(+) and CD4(+) interstitial T cell infiltrates, but only the CD4(+) subset included cells costaining for TGF-beta 1. Our data support the hypothesis that the recruitment of CD4(+) T regulatory cells to the allograft interstitium is a final common pathway for metastable renal transplant tolerance in a non-human primate model.  相似文献   

8.
The role of the CC chemokine, RANTES, in acute lung allograft rejection   总被引:12,自引:0,他引:12  
Lung transplantation is a therapeutic option for patients with end-stage lung disease. Acute allograft rejection is a major complication of lung transplantation and is characterized by the infiltration of activated mononuclear cells. The specific mechanisms that recruit these leukocytes have not been fully elucidated. The CC chemokine, RANTES, is a potent mononuclear cell chemoattractant. In this study we investigated RANTES involvement during acute lung allograft rejection in humans and in a rat model system. Patients with allograft rejection had a 2.3-fold increase in RANTES in their bronchoalveolar lavages compared with healthy allograft recipients. Rat lung allografts demonstrated a marked time-dependent increase in levels of RANTES compared with syngeneic control lungs. RANTES levels correlated with the temporal recruitment of mononuclear cells and the expression of RANTES receptors CCR1 and CCR5. To determine RANTES involvement in lung allograft rejection, lung allograft recipients were passively immunized with either anti-RANTES or control Abs. In vivo neutralization of RANTES attenuated acute lung allograft rejection and reduced allospecific responsiveness by markedly decreasing mononuclear cell recruitment. These experiments support the idea that RANTES, and the expression of its receptors have an important role in the pathogenesis of acute lung allograft rejection.  相似文献   

9.
Critical, but conditional, role of OX40 in memory T cell-mediated rejection   总被引:4,自引:0,他引:4  
Memory T cells can be a significant barrier to the induction of transplant tolerance. However, the molecular pathways that can regulate memory T cell-mediated rejection are poorly defined. In the present study we tested the hypothesis that the novel alternative costimulatory molecules (i.e., ICOS, 4-1BB, OX40, or CD30) may play a critical role in memory T cell activation and memory T cell-mediated rejection. We found that memory T cells, generated by either homeostatic proliferation or donor Ag priming, induced prompt skin allograft rejection regardless of CD28/CD154 blockade. Phenotypic analysis showed that, in contrast to naive T cells, such memory T cells expressed high levels of OX40, 4-1BB, and ICOS on the cell surface. In a skin transplant model in which rejection was mediated by memory T cells, blocking the OX40/OX40 ligand pathway alone did not prolong the skin allograft survival, but blocking OX40 costimulation in combination with CD28/CD154 blockade induced long-term skin allograft survival, and 40% of the recipients accepted their skin allograft for >100 days. In contrast, blocking the ICOS/ICOS ligand and the 4-1BB/4-1BBL pathways alone or combined with CD28/CD154 blockade had no effect in preventing skin allograft rejection. OX40 blockade did not affect the homeostatic proliferation of T cells in vivo, but markedly inhibited the effector functions of memory T cells. Our data demonstrate that memory T cells resisting to CD28/CD154 blockade in transplant rejection are sensitive to OX40 blockade and suggest that OX40 is a key therapeutic target in memory T cell-mediated rejection.  相似文献   

10.
Experimental and clinical studies of vascular allogenic extremity transplantation have yielded disappointing results and have not been clinically useful. With recent advances in transplantation immunology, considerable interest has focused on the understanding of leukocyte-endothelial interaction at the microcirculatory level. The objective of this study was to characterize the alterations in leukocyte-endothelial interaction in the early stages of rat hindlimb allograft rejection. To study the changes at the microcirculatory level, a new microsurgical model was developed; the cremaster muscle was incorporated into the transplanted hindlimb. The purpose of this study was to report on the microcirculatory changes during rat hindlimb allograft rejection. A total of 24 transplantations were performed among the four experimental groups. In a control group, 12 rat hindlimb-cremaster grafts were transplanted between genetically identical animals, Lewis to Lewis. Microcirculatory measurements of graft survival were taken at 24 hours (group 1A, n = 6) and at 72 hours (group 1B, n = 6). In the rejection control group, 12 transplantations were performed across a major histocompatibility barrier between Lewis-Brown Norway and Lewis rats. Microcirculatory measurements were taken at 24 (group 2A, n = 6) and 72 hours (group 2A, n = 6) as above. The following parameters were evaluated to discover the leukocyte-endothelial interaction: endothelial edema index and the number of rolling, adherent, and transmigrating leukocytes and lymphocytes in the postcapillary venule. Physical signs of limb rejection, such as edema, erythema, scaling, plaque formation on the skin, hair loss, and skin surface temperature, were monitored. Microcirculatory signs of rejection included the following. There was a significant increase in the number of adherent leukocytes in allograft transplants at both 24 hours (205 percent; 2.05 +/- 0.38) and 72 hours (431 percent; 9.11 +/- 3.41) when compared with isograft controls (1.00 +/- 0.89 at 24 hours; 2.11 +/- 0.34 at 72 hours) (p < 0.05). The activation of leukocyte transmigration increased more than 7-fold in muscle allografts at 24 hours (0.55 +/- 0.25 versus 4.16 +/- 1.89) and more than 6-fold at 72 hours (0.72 +/- 0.38 versus 4.38 +/- 1.28) after transplantation (p < 0.05). Endothelial edema index, a measure of endothelial swelling and cellular deposit accumulation, increased more than 119 percent in the allograft group 72 hours after transplantation (1.23 +/- 0.07 versus 1.46 +/- 0.09) (p < 0.05). The first clinical signs of limb rejection were scaling of the skin or hair loss; they were observed between the seventh and ninth postoperative days. The composite rat hindlimb-cremaster model presented in this study introduces a new in vivo approach to monitor acute graft rejection using the intravital microscopy system. This is a valuable model for defining the timing, sequence, and correlation between immunologic events and clinical signs during the acute phase of allograft rejection.  相似文献   

11.
Severe burn patients lack adequate skin donor sites to resurface their burn wounds. Patients with severe burn injuries to areas such as an entire face are presently reconstructed with skin grafts that are inferior to normal facial skin. This study was designed in part to determine whether human skin allografts would survive, repopulate, and persist on patients with immunosuppression and after discontinuation of immunosuppression. Small split-thickness skin grafts were synchronously transplanted at the time of renal transplantation from six renal transplant donors to recipients. All six patients were immunosuppressed with the usual doses of renal transplant immunosuppressants (methylprednisolone, cyclosporine, prednisone, and azathioprine). The skin allografts were biopsied when rejection was suspected and at various intervals. Special histologic studies were performed on skin biopsy specimens. Class II DNA tissue typing was performed on transplanted and autogenous skin biopsy specimens of four patients. Fluorescent in situ hybridization was performed successfully on skin biopsies of four patients' transplanted skin and on two of these four patients' autogenous skin. All six human skin allografts sustained a 100 percent take and long-term clinical survival. DNA tissue typing performed on skin allograft biopsy specimens from patients taking immunosuppressants all revealed donor and recipient cells. DNA tissue typing performed on autogenous skin biopsies from the same patients all revealed only recipient cells. Fluorescent in situ hybridization performed on allograft and autogenous specimens from patients taking immunosuppressants revealed transplanted donor cells with rare recipient cells in the allograft and only recipient cells in the autogenous skin. This study of six patients proves that it is possible for human skin allografts to survive indefinitely on patients taking the usual dosages of immunosuppressants used for renal transplantation. There was minimal repopulation of skin allografts by autogenous keratinocytes and fibroblast while patients were taking immunosuppressants. Immunosuppression was discontinued in two patients after renal transplant rejection after 6 weeks and 5 years. When immunosuppression was discontinued after 5 years in one patient, the skin allograft cells were destroyed and replaced with autogenous cells, but the skin graft did not reject acutely and persisted clinically. It is hypothesized that the acellular portion of the skin allograft was not rejected acutely because of relatively low antigenicity and because it acted as a lattice for autogenous cells to migrate into and replace rejected allograft skin cells. No chimerism was seen in autogenous skin in the skin-renal transplant patients in this study.  相似文献   

12.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.  相似文献   

13.
Allografts of skin were observed in Chelydra serpentina. The response to these grafts was modified by a previous transplantation of a limb bud at an early embryonic stage. When the same donor was used for all transplants, the first skin graft was accepted by the host. A second skin graft, however, was rejected at about the rate of a simple first set allograft of skin. The animals were conditioned by the embryonic limb graft; this embryonic graft can be undergoing rejection at the same time a first set skin graft from the same donor was being accepted. The tolerance induced by the embryonic graft was sepcific for its donor.  相似文献   

14.
Donor hemopoietic cell engraftment is considered to be an indicator of allograft tolerance. We depleted chimerism with cells specifically presensitized to the bone marrow donor to investigate its role in mixed chimera-induced tolerance. Three experimental models were used: model A, B10.A cells presensitized to B6 (a anti-b cells) were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; model B, anti-B6 presensitized cells prepared in DBA/2 --> B10.A mixed chimeras, thus unresponsive to DBA/2 (a anti-b/tol-d cells), were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; and model C, (BALB/c x B6)F(1) cells presensitized to CBA (d/b anti-k cells) were injected into (B6 x CBA)F(1) --> BALB/c mixed chimeras grafted with B6 skin. Skin was grafted on day 30. Injection of each cell type before skin grafting abolished hemopoietic cell engraftment and prevented allograft acceptance. Injection of presensitized cells after skin grafting resulted in different outcomes depending on the models. In model A, injection of a anti-b cells completely depleted chimerism and caused allograft rejection. In model B, injection of a anti-b/tol-d cells markedly reduced, but did not deplete, peripheral chimerism and maintained skin allograft survival. In model C, d/b anti-k cells reduced chimerism to the background levels but failed to cause graft rejection, probably due to persistence of injected cells which share MHC with skin grafts. Together, the results show that presence of chimeric donor cells is essential in both the induction and maintenance phases of tolerance induced by mixed chimerism.  相似文献   

15.
Platelets recruit leukocytes and mediate interactions between leukocytes and endothelial cells. Platelets have been long described as markers of transplant rejection, but the contribution of platelets to transplant rejection has not been critically examined. We demonstrate in this study that following T cell initiation of allograft rejection, platelets contribute to T cell recruitment and increased plasma inflammatory mediators and accelerate T cell-meditated skin graft rejection. Prior work from our laboratory has shown that platelets secrete glutamate when activated, which then induces platelet thromboxane production by signaling through platelet-expressed ionotropic glutamate receptors. Glutamate receptor antagonists therefore represent, to our knowledge, novel inhibitors of platelet-accelerated inflammation. We have found that plasma glutamate is increased in mice that receive skin grafts and that mice treated with glutamate receptor antagonists have improved graft survival and decreased plasma thromboxane, platelet factor 4 (CXCL4), and IFN-γ. Taken together, our work now demonstrates that subsequent to T cell initiation of skin graft rejection, platelets contribute to further T cell recruitment and that by blunting glutamate-mediated platelet activation, graft survival is improved.  相似文献   

16.
CD4 T cells are both necessary and sufficient to mediate acute cardiac allograft rejection in mice. This process requires "direct" engagement of donor MHC class II molecules. That is, acute rejection by CD4+ T cells requires target MHC class II expression by the donor and not by the host. However, it is unclear whether CD4+ T cell rejection requires MHC class II expression on donor hemopoietic cells, nonhemopoietic cells, or both. To address this issue, bone marrow transplantation in mice was used to generate chimeric heart donors in which MHC class II was expressed either on somatic or on hemopoietic cells. We report that direct recognition of hemopoietic and nonhemopoietic cells are individually rate limiting for CD4+ T cell-mediated rejection in vivo. Importantly, active immunization with MHC class II(+) APCs triggered acute rejection of hearts expressing MHC class II only on the somatic compartment. Thus, donor somatic cells, including endothelial cells, are not sufficient to initiate acute rejection; but they are necessary as targets of direct alloreactive CD4 T cells. Taken together, results support a two-stage model in which donor passenger leukocytes are required to activate the CD4 response while direct interaction with the somatic compartment is necessary for the efferent phase of acute graft rejection.  相似文献   

17.
Ye T  Zong R  Zhang X 《Gene》2012,498(2):254-258
The C3 component of complement has different roles in kidney disease and its local production in donor kidney may affect allograft function and rejection after organ transplantation. A single base substitution in c3 gene (rs2230199), defines two common allelic variants with different mobility on gel electrophoresis: S (Slow) and F (Fast). In order to evaluate the effect of this polymorphism on acute renal allograft rejection, one hundred samples of donor and recipients were collected and genotyping was done by PCR-RFLP method. The allelic frequencies were: C3S=0.791, C3F=0.209. There was no significant association between recipient's genotype and acute rejection (p value<0.05). No correlation between donor genotype and acute rejection was also present. Patients were divided into four groups, according to the recipient and donor genotypes: SS recipients and FS or FF donor, SS recipient and donor, FF or FS recipient and SS donor and FS or FF recipient and donor. There was no significant difference in rate of acute rejection between groups. Although the results didn't find any association between C3 complement polymorphisms and acute allograft rejection, there was no acute rejection in FS or FF donors and SS recipient group.  相似文献   

18.
The relative contributions of B lymphocytes and plasma cells during allograft rejection remain unclear. Therefore, the effects of B cell depletion on acute cardiac rejection, chronic renal rejection, and skin graft rejection were compared using CD20 or CD19 mAbs. Both CD20 and CD19 mAbs effectively depleted mature B cells, and CD19 mAb treatment depleted plasmablasts and some plasma cells. B cell depletion did not affect acute cardiac allograft rejection, although CD19 mAb treatment prevented allograft-specific IgG production. Strikingly, CD19 mAb treatment significantly reduced renal allograft rejection and abrogated allograft-specific IgG development, whereas CD20 mAb treatment did not. By contrast, B cell depletion exacerbated skin allograft rejection and augmented the proliferation of adoptively transferred alloantigen-specific CD4(+) T cells, demonstrating that B cells can also negatively regulate allograft rejection. Thereby, B cells can either positively or negatively regulate allograft rejection depending on the nature of the allograft and the intensity of the rejection response. Moreover, CD19 mAb may represent a new approach for depleting both B cells and plasma cells to concomitantly impair T cell activation, inhibit the generation of new allograft-specific Abs, or reduce preexisting allograft-specific Ab levels in transplant patients.  相似文献   

19.
Burns are tissue wounds caused by thermal, electrical, chemical cold or radiation injuries. Deep injuries lead to dermal damage that impairs the ability of the skin to heal and regenerate on its own. Skin autografting following burn excision is considered the current gold standard of care, but lack of patient’s own donor skin or unsuitability of the wound for autografting may require the temporary use of dressings or skin substitutes to promote wound healing, reduce pain, and prevent infection and abnormal scarring. These alternatives include deceased donor skin allograft, xenograft, cultured epithelial cells and biosynthetic skin substitutes. Allotransplantation is the transplantation of cells, tissues, or organs, sourced from a genetically non-identical member of the same species as the recipient. Human deceased donor skin allografts represent a suitable and much used temporizing option for skin cover following burn injury. The main advantages for its use include dermoprotection and promotion of reepithelialisation of the wound and their ability to act as skin cover until autografting is possible or re-harvesting of donor sites becomes available. Disadvantages of its use include the limited abundance and availability of donors, possible transmission of disease, the eventual rejection by the host and its handling storing, transporting and associated costs of provision. This paper will explore the role of allograft skin in burn care, defining the indications for its use in burn management and the future potential for allograft tissue banking.  相似文献   

20.
Furuta E  Seo N  Yamaguchi K 《Zoological science》2006,23(12):1093-1100
The rejection of allografts in mammals is mainly mediated by cytotoxic T-lymphocytes, whereas no comparable immunoreactive cells have been described in invertebrates. The present study was undertaken to determine whether similar cytotoxic effector cells are present when allograft rejection occurs in the terrestrial slug Incilaria fruhstorferi. A piece of dorsal skin from a donor animal was orthotopically transplanted to a recipient. Immunohistochemistry for perforin, detection of apoptosis by the TUNEL (TdT-mediated dUTP-biotin nick-end labeling) method, and electron microscopy were performed using both donor and recipient tissues. Cellular changes in the rejection process continued over for 40 days. Two functional types of "effector" cells were recognized at the rejection site, but they were observed to be macrophages possessing perforin granules and phagocytosing damaged cells of the allograft. Three days after transplantation, the perforin-positive cells were recognized only in the recipient tissue surrounding the allograft. Five days after transplantation, these cells started to appear in the graft, while they disappeared from the host tissue. However, TUNEL-positive cells were not observed throughout the graft-rejection process. Electron microscopic examination of the graft tissue revealed autophagic degeneration of epithelial cells, mucous cells, pigment cells, fibroblasts, and muscle cells. These observations suggest that the molluscan slug has the capability to recognize differences in cell-surface molecules between the allogeneic and recipient tissues, and that an allograft is chronically rejected due to a type of immunocyte that can induce perforin-dependent cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号