首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A key question for understanding the mechanisms of pulsatile insulin release is how the underlying beta-cell oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) are synchronized within and among the islets in the pancreas. Nitric oxide has been proposed to coordinate the activity of the beta-cells by precipitating transients of [Ca2+]i. Comparing ob/ob mice and lean controls, we have now studied the action of carbon monoxide (CO), another neurotransmitter with stimulatory effects on cGMP production. A strong immunoreactivity for the CO-producing constitutive heme oxygenase (HO-2) was found in ganglionic cells located in the periphery of the islets and in almost all islet endocrine cells. Islets from ob/ob mice had sixfold higher generation of CO (1 nmol.min-1.mg protein-1) than the lean controls. This is 100-fold the rate for their constitutive production of NO. Moreover, islets from ob/ob mice showed a threefold increase in HO-2 expression and expressed inducible HO (HO-1). The presence of an excessive islet production of CO in the ob/ob mouse had its counterpart in a pronounced suppression of the glucose-stimulated insulin release from islets exposed to the HO inhibitor Zn-protoporhyrin (10 microM) and in a 16 times higher frequency of [Ca2+]i transients in their beta-cells. Hemin (0.1 and 1.0 microM), the natural substrate for HO, promoted the appearance of [Ca2+]i transients, and 10 microM of the HO inhibitors Zn-protoporphyrin and Cr-mesoporphyrin had a suppressive action both on the firing of transients and their synchronization. It is concluded that the increased islet production of CO contributes to the hyperinsulinemia in ob/ob mice. In addition to serving as a positive modulator of glucose-stimulated insulin release, CO acts as a messenger propagating Ca2+ signals with coordinating effects on the beta-cell rhythmicity.  相似文献   

2.
Oscillations of cytoplasmic Ca2+ (Ca2+i) involved in cell regulation have recently attracted considerable attention. In the pancreatic beta-cells an intermediate concentration of glucose (11 mM) induces large oscillations of Ca2+i with periods of 2 to 6 min. Procedures stimulating insulin secretion further, such as raising glucose to 20-30 mM or adding carbachol, ATP, theophylline, glucagon, or forskolin, often changed these oscillations into a steady increase of Ca2+i. In addition, forskolin and glucagon triggered prominent 9- to 14-s Ca2+i spikes during the intervals of increased Cai2+, whereas carbachol and ATP initiated a series of rapid spikes of decreasing magnitude and increasing duration (6-11 s). All types of oscillations depended on the presence of extracellular Ca2+i, but carbachol and ATP also induced single Cai2+ transients in the absence of the cation. The results demonstrate hitherto unknown oscillations of Ca2+i in the pancreatic beta-cell which are dependent in different ways on Ca2+ entry.  相似文献   

3.
The cytoplasmic Ca2+ concentration (Ca2+i) was measured in single pancreatic beta-cells from ob/ob-mice using the fluorescent indicator fura-2. Raising the glucose concentration from 3 to 20 mM resulted in 25% initial lowering of Ca2+i, followed by 250% rise above the basal level of 49 +/- 3 nM. Tolbutamide (100 microM) was as effective as glucose in increasing Ca2+i, although its action was more rapid and not preceded by any reduction. The results support the concept that stimulated removal of Ca2+ from the cytoplasm is an essential part of the physiological glucose effect on the pancreatic beta-cells.  相似文献   

4.
Glucose induces large amplitude oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells. The effects of temperature on these oscillations were examined by monitoring [Ca2+]i continuously in single beta-cells from ob/ob-mice using dual wavelength microfluorometry. The oscillations of [Ca2+]i disappeared when the temperature was increased above 42 degrees C and were reversibly inhibited below 30 degrees C. However, cooling did not prevent a glucose response in terms of the average rise of [Ca2+]i. Since patch clamp studies of single beta-cells have indicated a random occurrence of glucose-induced action potentials at room temperature, it was important to explore how the sugar affected the electrical activity at 37 degrees C. Using the cell-attached configuration of the patch clamp technique for such analyses, the action potentials were found to occur in bursts with durations similar to the large amplitude oscillations of [Ca2+]i.  相似文献   

5.
Heparin was found to inhibit the Ca2+ release induced by inositol 1,4,5-trisphosphate (IP3) in permeabilized pancreatic beta-cells obtained from obese hyperglycemic mice. The effect of heparin was dose-dependent and not due to inhibition of Ca2+ uptake into the IP3-sensitive pool. The effect appeared specific for heparin and was not reproduced by other polysaccharides such as chondroitin sulfates. Heparin might consequently be a useful tool when investigating the molecular mechanism whereby IP3 mobilizes Ca2+.  相似文献   

6.
Digital image analysis was employed for resolving the temporal and spatial variations of the cytoplasmic Ca2+ concentration ([Ca2+]i) in pancreatic beta-cells loaded with the Ca(2+)-indicator Fura-2. Glucose-stimulated individual beta-cells exhibited large amplitude oscillations of [Ca2+]i with a mean frequency of 0.33 min-1. When Ca2+ diffusion was restricted by increasing the Ca2+ buffering capacity, the sugar-induced rise of [Ca2+]i preferentially affected the peripheral cytoplasm. When glucagon was present glucose also caused less prominent oscillations with about a 10-fold higher frequency superimposed on an elevated [Ca2+]i. In small clusters of 6-14 cells the average frequency of the large amplitude oscillations increased to 0.60 min-1. The clusters were found to contain micro-domains of electrically coupled cells with synchronized oscillations. After increasing the glucose concentration, adjacent domains became functionally coupled. The oscillations originated from different cells in the cluster. Also the fast glucagon-dependent oscillations were synchronized between cells and had different origins. The results indicate that coupling of beta-cells leads to an increased frequency of the large amplitude oscillations, and that the oscillatory characteristics are determined collectively among electrically coupled beta-cells rather than by particular pacemaker cells. In the light of these data it is necessary to reconsider the previous ideas that glucose-induced oscillations of membrane potential and [Ca2+]i require coupling between many beta-cells, and that the peak [Ca2+]i values reached during oscillations should increase with the size of the coupled cluster.  相似文献   

7.
The effect of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition on the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) was studied in primary insulin-releasing pancreatic beta-cells isolated from mice, rats and human subjects as well as in clonal rat insulinoma INS-1 cells. In Ca(2+)-deficient medium the individual primary beta-cells reacted to the SERCA inhibitor cyclopiazonic acid (CPA) with a slow rise of [Ca(2+)](i) followed by an explosive transient elevation. The [Ca(2+)](i) transients were preferentially observed at low intracellular concentrations of the Ca(2+) indicator fura-2 and were unaffected by pre-treatment with 100 microM ryanodine. Whereas 20mM caffeine had no effect on basal [Ca(2+)](i) or the slow rise in response to CPA, it completely prevented the CPA-induced [Ca(2+)](i) transients as well as inositol 1,4,5-trisphosphate-mediated [Ca(2+)](i) transients in response to carbachol. In striking contrast to the primary beta-cells, caffeine readily mobilized intracellular Ca(2+) in INS-1 cells under identical conditions, and such mobilization was prevented by ryanodine pre-treatment. The results indicate that leakage of Ca(2+) from the endoplasmic reticulum after SERCA inhibition is feedback-accelerated by Ca(2+)-induced Ca(2+) release (CICR). In primary pancreatic beta-cells this CICR is due to activation of inositol 1,4,5-trisphosphate receptors. CICR by ryanodine receptor activation may be restricted to clonal beta-cells.  相似文献   

8.
We used the patch-clamp technique to study the effects of extracellular ATP on the activity of ion channels recorded in rat pancreatic beta-cells. In cell-attached membrane patches, action currents induced by 8.3 mM glucose were inhibited by 0.1 mM ATP, 0.1 mM ADP or 15 microM ADPbetaS but not by 0.1 mM AMP or 0.1 mM adenosine. In perforated membrane patches, action potentials were measured in current clamp, induced by 8.3 mM glucose, and were also inhibited by 0.1 mM ATP with a modest hyperpolarization to -43 mV. In whole-cell clamp experiments, ATP dose-dependently decreased the amplitudes of L-type Ca2+ channel currents (ICa) to 56.7+/-4.0% (p<0.001) of the control, but did not influence ATP-sensitive K+ channel currents observed in the presence of 0.1 mM ATP and 0.1 mM ADP in the pipette. Agonists of P2Y purinoceptors, 2-methylthio ATP (0.1 mM) or ADPbetaS (15 microM) mimicked the inhibitory effect of ATP on ICa, but PPADS (0.1 mM) and suramin (0.2 mM), antagonists of P2 purinoceptors, counteracted this effect. When we used 0.1 mM GTPgammaS in the pipette solution, ATP irreversibly reduced ICa to 58.4+/-6.6% of the control (p<0.001). In contrast, no inhibitory effect of ATP was observed when 0.2 mM GDPbetaS was used in the pipette solution. The use of either 20 mM BAPTA instead of 10 mM EGTA, or 0.1 mM compound 48/80, a blocker of phospholipase C (PLC), in the pipette solution abolished the inhibitory effect of ATP on ICa, but 1 microM staurosporine, a blocker of protein kinase C (PKC), did not. When the beta-cells were pretreated with 0.4 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump, ATP lost the inhibitory effect on ICa. These results suggest that extracellular ATP inhibits action potentials by Ca2+-induced ICa inhibition in which an increase in cytosolic Ca2+ released from thapsigargin-sensitive store sites was brought about by a P2Y purinoceptor-coupled G-protein, PI-PLC and IP3 pathway.  相似文献   

9.
Pancreatic beta-cells isolated from obese-hyperglycaemic mice released intracellular Ca2+ in response to carbamoylcholine, an effect dependent on the presence of glucose. The effective Ca2+ concentration reached was sufficient to evoke a transient release of insulin. When the cells were deficient in Ca2+, the Ca2+ pool sensitive to carbamoylcholine stimulation was equivalent to that released by ionomycin. Unlike intact cells, cells permeabilized by high-voltage discharges failed to generate either inositol 1,4,5-triphosphate (InsP3) or to release Ca2+ after exposure to carbamoylcholine. However, the permeabilized cells released insulin sigmoidally in response to increasing concentrations of Ca2+. Also in the absence of functional mitochondria these cells exhibited a large ATP-dependent buffering of Ca2+, enabling the maintenance of an ambient Ca2+ concentration corresponding to about 150 nM even after several additional pulses of Ca2+. InsP3, maximally effective at 6 microM, promoted a rapid and pronounced release of Ca2+. The InsP3-sensitive Ca2+ pool was rapidly filled and lost its Ca2+ late after ATP depletion. The transient nature of the Ca2+ signal was not overcome by repetitive additions of InsP3. It was possible to restore the response to InsP3 after a delay of approx. 20 min, an effect which had less latency after the addition of Ca2+. These latter findings argue against degradation and/or desensitization as factors responsible for the transiency in InsP3 response. It is suggested that Ca2+ released by InsP3 is taken up by a part of the endoplasmic reticulum (ER) not sensitive to InsP3. On metabolism of InsP3, Ca2+ recycles to the InsP3-sensitive pool, implying that this pool indeed has a very high affinity for the ion. The presence of functional mitochondria did not interfere with the recycling process. The ER in pancreatic beta-cells is of major importance in buffering Ca2+, but InsP3 only modulates Ca2+ transport for a restricted period of time following immediately upon its formation. Thereafter the non-sensitive part of the ER takes over the continuous regulation of Ca2+ cycling.  相似文献   

10.
The effects of insulin secretagogues on the cytoplasmic Mg2+ concentration ([Mg2+]i) of pancreatic beta-cells were studied in suspensions and in individual beta-cells using dual-wavelength fluorometry and the indicator mag-fura-2. Average [Mg2+]i was in the 800-900 microM range in a medium containing 3 mM glucose. When the sugar concentration was raised to 20 mM, the cells reacted with an initial lowering of [Mg2+]i followed by an increase. The sugar apparently also stimulated leakage of the Mg2+ indicator. Addition of 100 microM tolbutamide or raising the K+ concentration by 25 mM caused relatively rapid increases of [Mg2+]i. Methoxyverapamil prevented the [Mg2+]i-increasing actions of glucose, K+ and tolbutamide. The greatest change in [Mg2+]i was obtained when beta-cells were exposed to 100 microM carbachol. In this case there was a more than 10% lowering, which was reversed upon removal of the agonist. Measurements of [Mg2+]i are important not only for understanding fluctuations of this ion, but may also aid to elucidate the mechanisms involved in the regulation of cytoplasmic Ca2+.  相似文献   

11.
The intrapancreatic neuropeptide galanin has been demonstrated to lower plasma insulin levels in vivo. The effects of this peptide on insulin secretion, cytoplasmic free Ca2+ concentration and membrane potential have now been studied in vitro. Glucose-stimulated insulin secretion was inhibited by galanin under these conditions, indicating a direct effect of the peptide on the beta-cells. The neuropeptide reversed both the increase in membrane potential and cytoplasmic free Ca2+ in response to glucose stimulation. At a non-stimulatory concentration of the sugar, galanin induced a slight hyperpolarization without any effect on cytoplasmic free Ca2+. Galanin did not affect K+-induced increase in cytoplasmic free Ca2+, excluding a direct inhibitory effect on the voltage-activated Ca2+ channels. The results indicate that galanin inhibition of glucose-stimulated insulin release involves hyperpolarization with a subsequent decrease in cytoplasmic free Ca2+.  相似文献   

12.
The effects of glucose, diazoxide, K+, and tolbutamide on the activity of K+ channels, membrane potential, and cytoplasmic free Ca2+ concentration were investigated in beta-cells from the Uppsala colony of obese hyperglycemic mice. With [K+]e = [K+]i = 146 mM, it was demonstrated that the dominating channel at the resting potential is a K+ channel with a single-channel conductance of about 65 picosiemens and a reversal potential of about +70 mV (pipette potential). This channel is characterized by complex kinetics with openings grouped in bursts. The channel was completely inhibited by 20 mM glucose in intact cells or by intracellularly applied Mg-ATP (1 mM). The number of active channels was markedly reduced already by 5 mM glucose. However, the single channel current of the channels remaining active was unaffected, indicating no major depolarization. To evoke a substantial depolarization of the membrane and thereby action potentials, a total block in channel activity was necessary. This could be achieved either by increasing the concentration of glucose to 20 mM or by combining 5 mM glucose with 100 microM tolbutamide. In both cases, the effect was counteracted by the hyperglycemic sulfonamide diazoxide. The effects on single channel activity were paralleled by changes in membrane potential and cytoplasmic free Ca2+ concentration, also when the latter measurements were performed at room temperature. The transient increase in the number of active channels and the resulting hyperpolarization observed after raising the glucose concentration to 20 mM probably reflected a drop in cytoplasmic ATP concentration. It is suggested that ATP works as a key regulator of the beta-cell membrane potential and thereby the opening of voltage-activated Ca2+ channels.  相似文献   

13.
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.  相似文献   

14.
The effects of the hypoglycemic sulfonylureas tolbutamide and glibenclamide on free cytoplasmic Ca2+, [Ca2+]i, were compared with that of a depolarizing concentration of K+ in dispersed and cultured pancreatic beta-cells from ob/ob mice. [Ca2+]i was measured with the fluorescent Ca2+-indicator quin2. The basal level corresponded to 150 nM and increased to 600 nM after exposure to 30.9 mM K+. The corresponding levels after stimulation with 1 microM glibenclamide and 100 microM tolbutamide were 390 and 270 nM respectively. K+ depolarization increased [Ca2+]i more rapidly than either of the sulfonylureas. It is suggested that the increased [Ca2+]i obtained after stimulation by sulfonylureas is due to depolarization of the beta-cells with subsequent entry of Ca2+ through voltage-dependent channels.  相似文献   

15.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

16.
The second messenger cAMP exerts powerful stimulatory effects on Ca(2+) signaling and insulin secretion in pancreatic beta-cells. Previous studies of beta-cells focused on protein kinase A (PKA) as a downstream effector of cAMP action. However, it is now apparent that cAMP also exerts its effects by binding to cAMP-regulated guanine nucleotide exchange factors (Epac). Although one effector of Epac is the Ras-related G protein Rap1, it is not fully understood what the functional consequences of Epac-mediated signal transduction are at the cellular level. 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3'-5'-cyclic monophosphate (8-pCPT-2'-O-Me-cAMP) is a newly described cAMP analog, and it activates Epac but not PKA. Here we demonstrate that 8-pCPT-2'-O-Me-cAMP acts in human pancreatic beta-cells and INS-1 insulin-secreting cells to mobilize Ca(2+) from intracellular Ca(2+) stores via Epac-mediated Ca(2+)-induced Ca(2+) release (CICR). The cAMP-dependent increase of [Ca(2+)](i) that accompanies CICR is shown to be coupled to exocytosis. We propose that the interaction of cAMP and Epac to trigger CICR explains, at least in part, the blood glucose-lowering properties of an insulinotropic hormone (glucagon-like peptide-1, also known as GLP-1) now under investigation for use in the treatment of type-2 diabetes mellitus.  相似文献   

17.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

18.
Cytokines may participate in islet destruction during the development of type 1 diabetes. Expression of inducible nitric oxide synthase (iNOS) and subsequent NO formation induced by IL-1 beta or (IL-1 beta + IFN-gamma) may impair islet function in rodent islets. Inhibition of iNOS or a deletion of the iNOS gene (iNOS -/- mice) protects against cytokine-induced beta-cell suppression, although cytokines might also induce NO-independent impairment. Presently, we exposed wild-type (wt, C57BL/6 x 129SvEv) and iNOS -/- islets to IL-1 beta (25 U/ml) and (IL-1 beta (25 U/ml) + IFN-gamma (1000 U/ml)) for 48 h. IL-1 beta and (IL-1 beta + IFN-gamma) induced a significant increase in NO formation in wt but not in iNOS -/- islets. Both IL-1 beta and (IL-1 beta + IFN-gamma) impaired glucose-stimulated insulin release and reduced the insulin content of wt islets, while (IL-1 beta + IFN-gamma) reduced glucose oxidation rates and cell viability. IL-1 beta exposure to iNOS -/- islets impaired glucose-stimulated insulin release, increased insulin accumulation and reduced the insulin content, without any increase in cell death. Exposure to (IL-1 beta + IFN-gamma) had no effect on iNOS -/- islets except reducing the insulin content. Our data suggest that IL-1 beta may inhibit glucose-stimulated insulin release by pathways that are not NO-dependent and not related to glucose metabolism or cell death.  相似文献   

19.
Inisolated rat pancreatic -cells, the nitric oxide (NO) donor NOC-7 at1 µM reduced the amplitude of the oscillations of cytosolicCa2+ concentration ([Ca2+]c)induced by 11.1 mM glucose, and at 10 µM terminated them. In thepresence of NG-nitro-L-arginine(L-NNA), however, NOC-7 at 0.5 and 1 µM increased theamplitude of the [Ca2+]c oscillations,although the NO donor at 10 µM still suppressed them. Aqueous NOsolution also had a dual effect on the[Ca2+]c oscillations. The soluble guanylatecyclase inhibitor LY-83583 and the cGMP-dependent protein kinaseinhibitor KT5823 inhibited the stimulatory effect of NO, and8-bromo-cGMP increased the amplitude of the[Ca2+]c oscillations. Patch-clamp analyses inthe perforated configuration showed that 8-bromo-cGMP inhibited wholecell ATP-sensitive K+ currents in the isolated ratpancreatic -cells, suggesting that the inhibition by cGMP ofATP-sensitive K+ channels is, at least in part, responsiblefor the stimulatory effect of NO on the[Ca2+]c oscillations. In the presence ofL-NNA, the glucose-induced insulin secretion from isolatedislets was facilitated by 0.5 µM NOC-7, whereas it was suppressed by10 µM NOC-7. These results suggest that NO facilitatesglucose-induced [Ca2+]c oscillations of-cells and insulin secretion at low concentrations, which effectsare mediated by cGMP, whereas NO inhibits them in a cGMP-independentmanner at high concentrations.

  相似文献   

20.
Phospholipase D (PLD) has been strongly implicated in the regulation of Golgi trafficking as well as endocytosis and exocytosis. Our aim was to investigate the role of PLD in regulating the biphasic exocytosis of insulin from pancreatic beta-cells that is essential for mammalian glucose homeostasis. We observed that PLD activity in MIN6 pancreatic beta-cells is closely coupled to secretion. Cellular PLD activity was increased in response to a variety of secretagogues including the nutrient glucose and the cholinergic receptor agonist carbamoylcholine. Conversely, pharmacological or hormonal inhibition of stimulated secretion reduced PLD activity. Most importantly, blockade of PLD-catalyzed phosphatidic acid formation using butan-1-ol inhibited insulin secretion in both MIN6 cells and isolated pancreatic islets. It was further established that PLD activity was required for both the first and the second phase of glucose-stimulated insulin release, suggesting a role in the very distal steps of exocytosis, beyond granule recruitment into a readily releasable pool. Visualization of granules using green fluorescent protein-phogrin confirmed a requirement for PLD prior to granule fusion with the plasma membrane. PLD1 was shown to be the predominant isoform in MIN6 cells, and it was located at least partially on insulin granules. Overexpression of wild-type or a dominant negative catalytically inactive mutant of PLD1 augmented or inhibited secretagogue-stimulated secretion, respectively. The results suggest that phosphatidic acid formation on the granule membrane by PLD1 is essential for the regulated secretion of insulin from pancreatic beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号