首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since its escapement into the Upper Mississippi River (UMR) and rapid expansion in the late 1900's, the common carp, Cyprinus carpio, has become a major component of the river fishery. Mean annual harvest value for this species was $270000 between 1953 and 1977. Recent evidence suggests that common carp may not be as abundant in the river as they have been in the past. We summarized historical commerical information on common carp in the UMR to put its current harvest levels in perspective. A major factor responsible for recent low annual harvests has been PCB contamination of the river in the Lake Pepin area. Market and biological factors probably have also contributed to declining harvests. To help explain why common carp populations in the UMR may be declining, we reviewed literature pertaining to the ecology of the species, particularly that from the river, its tributaries, or midwestern lakes. We included information on how common carp are controlled by environmental factors, and how they interact with other biota. Most aspects of carp ecology in the UMR and other areas are similar. Exceptions relate primarily to their response to annual water level regimes of the river. We postulate that population declines and absent year classes in the UMR may be related to poor recruitment during high- or variable-water years.  相似文献   

2.
The Upper Mississippi River System (UMRS) is a large and diverse river system that changes character along its 1,200 mile network of rivers and canals and 2.6 million acres of floodplain. It supports more than 30 million people in its watershed, a significant commercial waterway, more than a million acres of “floodplain” agriculture and about one-half million acres of river-floodplain managed for fish, wildlife, and recreation. Large-scale geomorphology and climate patterns largely determine the hydrologic characteristics of a nested hierarchy of UMRS river reaches. The human impacts above are also important drivers determining hydrologic characteristics within the hierarchy. Understanding the relationship among physical and chemical processes and ecological responses is critical to implement an adaptive management framework for UMRS ecosystem sustainability. Historic or contemporary data from 42 locations were used to examine changes in UMRS hydrology and to demonstrate the utility of a multiple reference condition analysis for river restoration. A multivariate mathematical framework was used to show how river stage hydrology can be characterized by the variability, predictability, seasonality, and rate of change. Large-scale “geomorphic reaches” have distinct hydrologic characteristics and response to development throughout the UMRS region, but within navigation pool hydrology is similar among all impounded reaches regardless of geomorphic reach. Reaches with hydrologic characteristics similar to historic reference conditions should be examined to determine whether those characteristics support desired management objectives. Water levels can be managed, within limits to support navigation and agriculture, to more closely resemble natural hydrology for the benefit of a variety of species, habitats, and ecological processes.  相似文献   

3.
The Upper Mississippi River system has been modified with locks, dams, dikes, bank revetments, channel modifications, and dredging to provide a nine-foot navigation channel. These activities have changed the river's characteristics. The historical changes in the hydrologic, hydraulic, and geomorphic characteristics were assessed and related to navigational development and maintenance activities in the Upper Mississippi River system. The hydrologic, hydraulic, and geomorphic features studied include river discharges, stages, sediment transport, river position, river surface area, island surface area, and river bed elevation. Water and sediment transport effects on dredging were also estimated. It was found that the general position of the Upper Mississippi River system has remained essentially unchanged in the last 150 years except for specific man-made developments in the river basin. The stage, velocity, sediment transport, and river and island areas were altered by development of the 2.75-m navigation system. Dredging requirements are strongly related to mean annual water discharge. Years in which water discharges were great were generally the years during which large volumes of sediment needed to be dredged from the channel. The backwater areas are experiencing some deposition. With implementation of erosion-control measures in major tributaries and upland areas, better confinement of disposed dredged materials, and better maintenance practices, the sedimentation and pertinent problems in the main channel, as well as in the backwater areas, may be reduced with time.  相似文献   

4.
The Upper Mississippi River System (UMRS) is a geographically diverse basin extending 10° north temperate latitude that has produced fishes for humans for millennia. During European colonization through the present, the UMRS has been modified to meet multiple demands such as navigation and flood control. Invasive species, notably the common carp, have dominated fisheries in both positive and negative ways. Through time, environmental decline plus reduced economic incentives have degraded opportunities for fishery production. A renewed focus on fisheries in the UMRS may be dawning. Commercial harvest and corresponding economic value of native and non-native species along the river corridor fluctuates but appears to be increasing. Recreational use will depend on access and societal perceptions of the river. Interactions (e.g., disease and invasive species transmission) among fish assemblages within the UMRS, the Great Lakes, and other lakes and rivers are rising. Data collection for fisheries has varied in intensity and contiguousness through time, although resources for research and management may be growing. As fisheries production likely relies on the interconnectivity of fish populations and associated ecosystem processes among river reaches (e.g., between the pooled and unpooled UMRS), species-level processes such as genetics, life-history interactions, and migratory behavior need to be placed in the context of broad ecosystem- and landscape-scale restoration. Formal communication among a diverse group of researchers, managers, and public stakeholders crossing geographic and disciplinary boundaries is necessary through peer-reviewed publications, moderated interactions, and the embrace of emerging information technologies.  相似文献   

5.
We evaluated habitat changes of tributary (drowned river mouth) wetlands in the upper St. Lawrence River with analysis of pre-and post-regulation water levels and historical vegetation reconstruction from aerial photographs. In addition, the germination response of transplanted wetland soil was compared to understand responses to moist versus saturated hydrology. Typha stem density was sampled in reference sites under the influence of water-level regulation by the International Joint Commission (IJC) and compared to treatment sites where installed control structures held levels (<0.7 m) higher. Major hydrologic changes due to regulation included a reduction of inter-annual variability with a reduction in peak levels and periodic lows, leading to a dampening of 30–40 year water-level cycles. Wetland photo interpretation indicated that flooded and mixed habitat categories were apparent at all sites for pre-regulation in 1948, but post-regulation photos (1972 and 1994) showed encroachment of robust emergent (Typha angustifolia, T. latifolia, and T. x glauca) in these habitats. Vegetation surveys (7 years, 2001–2007) indicated that reference and treatment sites were dominated by Typha, but mean stem densities were not statistically different. Typha stem density, however, declined in response to decreased summer water level. Periodic summer low water levels coupled with higher winter levels (that promote muskrat activity) were hypothesized to have the greatest effect on reducing Typha density. Seed-bank analysis indicated that a greater diversity of plant species germinated in mesic (moist) conditions than in the saturated treatment (flooded), where Typha was the dominant seedling component. Altered hydrologic regimes and invasive Typha have had a substantial effect on habitat structure within coastal wetlands and inferences from local management of levels provide useful guidance for future system-wide regulation.  相似文献   

6.
7.
Delong MD  Thorp JH 《Oecologia》2006,147(1):76-85
Trophic dynamics of large river–floodplain ecosystems are still not well understood despite development of several conceptual models over the last 25 years. To help resolve questions about the relative contribution of algal and detrital organic matter to food webs in the Upper Mississippi River, we (1) separated living and detrital components of ultrafine and fine transported organic matter (UTOM and FTOM, respectively) by colloidal silica centrifugation; (2) identified stable isotope signatures (δ13C and δ15N) for these two portions of transported organic matter and other potential organic matter sources; and (3) employed a multiple source, dual-isotope mixing model to determine the relative contribution of major energy sources to primary consumers and the potential contribution of basal sources to the biomass of secondary consumers. The δ13C and δ15N of living and detrital fractions of UTOM and FTOM were distinct, indicating clear differences in isotopic composition of the algal and detrital fractions of transported organic matter. Living and detrital transported organic matter also differed from other potential organic matter sources by either δ13C or δ15N. A six-source mixing model using both δ13C and δ15N indicated that algal transported organic matter was the major resource assimilated by primary consumers. The contribution of detrital transported organic matter was small in most cases, but there were a small number of taxa for which it could potentially contribute to more than half the assimilated diet. Colloidal dissolved organic matter, which includes heterotrophic bacteria, accounted for only a small fraction of the organic matter assimilated by most primary consumers, indicating that coupling between microbial processes and metazoan production is minimal. Terrestrial C3 litter from the floodplain forest floor and aquatic macrophytes were also relatively unimportant to the assimilated diet of primary consumers. Application of the mixing model to compare basal source isotopic ratios to secondary consumers revealed that most organic matter moving from primary to secondary consumers originated from algal TOM. Our findings indicate that autochthonous organic matter is the major energy source supporting metazoan production in the main channel of this large river, at least during the summer. This study joins a number of other investigations performed globally that indicate organic matter originating from instream production of sestonic and benthic microalgae is a major driver in the trophic dynamics of large river ecosystems.  相似文献   

8.
A long-handled, double-headed garden rake was used to collect submersed aquatic vegetation (SAV) and compared to in-boat visual inspection to record species presence at 67 individual sites. Six rake subsamples were taken at each site and a rake density rating was given to each species collected in the subsamples. Presence at the site, frequency of occurrence in the six rake samples, and additive density rating (the sum of the six rake density ratings) were quantified for each species at each site. The validity of the indices was tested against biomass data collected by clipping all remaining vegetation from the 67 sites. In the turbid water of the Mississippi River, visual inspection of SAV from boats was ineffective with only 27% of the species detected, while raking retrieved on average 70% of the total number of submersed species in the 67 sites. Presence of species at individual sites was correlated with biomass from Stuckenia pectinata, while frequency of occurrence and additive density rating were correlated with biomass for species with greater than 21 g of total biomass from all sites. The efficiency of the rake to collect biomass varied among species; only 18% of total biomass was captured via raking the site six times. Additive density rating as an index of abundance can be used to detect temporal changes in the same water body; however, cross-species comparison is not encouraged unless the efficiency of the rake has been determined for each species being compared.  相似文献   

9.
Seasonal influences and the role of floodplain forest as source or sink of organic matter is relatively unknown for 3arge, temperate rivers. Discharge and fine-particulate (FPOC), dissolved (DOC), and total organic carbon concentrations (TOC) were measured during five sampling periods from November, 1984, to August, 1985, above and below the floodplain-forested area (1054 ha) of Burlington Island in navigation Pool 19, upper Mississippi River. Sampling coincided with autumnal leaf fall of the floodplain forest, peak flood and falling spring flood, and low-flow conditions prior to and during phytoplankton bloom. Greatest TOC transport occurred during peak flood (8.84 × 106 Kg/day) and leaf fall (7.79 × 106 Kg/day). Peak flood transport was dominated by FPOC associated with flushing of material from upland areas. Transport during autumnal leaf fall was predominantly DOC attributed to litter leaching. Seasonal DOC loads generally increased downstream except during the phytoplankton bloom when a decrease was associated with increased microbial metabolic activity. Downstream decline in FPOC and increasing DOC loads during peak flood characterized the mechanism of deposition and processing of FPOC on the floodplain. FPOC concentration was significantly correlated to discharge and DOC concentrations were higher than FPOC except for peak flood. Significant downstream changes in TOC load suggests the importance of riparian vegetation as an influence on organic matter transport in large rivers.  相似文献   

10.
In the biomedical field, calls for the generation of new regulations or for the amendment of existing regulations often follow the emergence of apparently new research practices (such as embryonic stem cell research), clinical practices (such as facial transplantation) and entities (such as Avian Influenza/'Bird Flu'). Calls for regulatory responses also arise as a result of controversies which bring to light longstanding practices, such as the call for increased regulation of human tissue collections that followed the discovery of unauthorised post-mortem organ retention. Whilst it seems obvious that new regulations should only be generated if existing regulations are inadequate (a practice referred to in this paper as 'regulatory syncretism'), this does not always occur in practice. This paper examines the conceptual steps involved in generating regulatory responses to emerging phenomena. Two decision points are identified. First, a stance is taken as to whether the emerging phenomenon raises unique ethical or legal issues (exceptionalism versus non-exceptionalism). Second, the decision is made as to whether new regulation should be generated only for truly unique phenomena (syncretism versus asyncretism). It is argued here that it is important to make a careful assessment of novelty, followed by a reflective and deliberative choice of regulatory syncretism or asyncretism, since each type of regulatory response has advantages which need to be harnessed and disadvantages which need to be managed--something that can only occur if regulators are attentive to the choices they are making.  相似文献   

11.
Illinois, Iowa, Minnesota, Missouri, and Wisconsin have strong botanical traditions that have resulted in a macrophyte literature which documents the identity, taxonomy, floristics, and ecology of aquatic macrophytes and wetland vegetation of the Upper Mississippi River and its floodplain. These findings are reviewed with respect to floristics, vegetation dynamics (patterns, history, production and management), and environmental changes that impact vegetation. Aspects requiring future study are noted to direct subsequent investigations.  相似文献   

12.
This study used stratified random sampling to examine the spatial and temporal distribution of zooplankton communities in a large floodplain river (Mississippi River, USA). Potential mechanisms controlling zooplankton abundance and community structure were considered. Main channel and backwater habitats included in this study differed between a turbid upper pool reach where aquatic macrophytes were sparse and a lower pool reach which was considerably less turbid and had extensive aquatic macrophyte coverage. Samples were collected monthly during the summer over a 2-year period and multivariate analysis was used to examine the spatial and temporal distribution of zooplankton. Significant differences were found in zooplankton density and community composition among habitats and reaches within the pool. Rotifers were the dominant taxa and seasonality was pronounced, with peak densities often occurring in late-spring. Community structure varied by habitat and reach, which suggests that water quality, physical habitat characteristics, presence of aquatic macrophytes, and zooplankton sources can all influence the zooplankton communities of the Upper Mississippi River. Characterization of the zooplankton communities provides a basis for understanding changes in the river ecosystem and examination of zooplankton communities among habitats provides insight into the mechanisms affecting zooplankton dynamics.  相似文献   

13.
A study of the phytoplankton community dynamics in Navigation Pool No. 7 of the Upper Mississippi River was conducted from May through October, 1982. The objectives of this study were to estimate total standing crops, determine the taxonomic composition and examine the seasonal succession of the phytoplankton community. Four sampling sites were established: two in Lake Onalaska, a large backwater lake on the Wisconsin side of the main channel; one in the main channel near Dakota, Minnesota; and one in the main channel just upstream from Lock and Dam No. 7.The phytoplankton communities at all sampling sites were dominated by diatoms except during July and August when a bloom of blue-green algae was observed. The dominant diatoms from May through mid-July were Melosira italica, Stephanodiscus niagarae, Stephanodiscus hantzschii, Stephanodiscus astrea, and Synedra ulna. Aphanizomenon flos-aquae and Microcystis aeruginosa were the most prevalent blue-green algae during the mid-summer bloom. The diatoms Melosira italica and Melosira granulata were dominant in September and October. Lesser amounts of green algae, cryptomonads and euglenoids were also observed at various times of the sampling period.Total standing crops based on cell volume were usually greatest at the Lock and Dam No. 7 site. The maximum standing crop (10.4 mm3 1–1) was observed at the Lock and Dam No. 7 site on 4 September; the minimum standing crop (0.4 mm3 1–1) was observed at the eastern Lake Onalaska site on the same date. Concentrations of nitrogen, phosphorus, and silica remained at high levels throughout the study period and did not appear to limit phytoplankton standing crops.  相似文献   

14.
The northern section of the Upper Mississippi River supports a diverse macrobenthic assemblage. Distribution of this benthic fauna, benthic community structure, and factors which influences which influence both of these phenomena in these upper pools are reviewed. Dumping of heavy loads of municipal and industrial wastes from the Minneapolis-St. Paul metropolitan area has severely stressed the benthic community. Once abundant, pollution-sensitive mayflies, Hexagenia bilineata and H. limbata, are noticeably absent, replaced by pollution-tolerant oligochaetes and midges (notably Chironomus). Harmful effects of this pollution are not restricted to the area immediately downstream from the Twin Cities. In Lake Pepin, the Hexagenia population has suffered a drastic decline. The benthic community is characterized by low species diversity and a dominant, pollution-tolerant Chironomus plumosus — Oligochaeta — Sphaeriidae — Hirudinea community complex. Farther south, effects of the high organic load which originates approximately 226 km upstream are ameliorated. Inundation of large, diverse land areas contributes to the great ecological diversity in Pools No. 7 and No. 8. In Navigation Pool No. 7, benthic standing crops in the backwater pool areas (biomass range: 2.08–26.96 g m–2) exceed those in the main channel (biomass range: 0.05–1.02 g m–2). Greater numbers of burrowing mayflies and mollusks were found in the pool areas. Of 131 taxa collected from 1976–1977 in Lake Onalaska, which occupies most of Pool No. 7, eight dominant groups — Oligochaeta, Hirudinea, Isopoda, Amphipoda, Lepidoptera, Diptera, Gastropoda, and Pelecypoda — accounted for 90–93% of the macroinvertebrates. In Pool No. 8, over half of the 144 benthic taxa collected during the summer of 1975 were insect nymphs and larvae. Oligochaetes were by far the most ubiquitous and dominant macroinvertebrates. Habitat preferences of particular benthic forms reflected distributional relationships between macroinvertebrates and physical-chemical conditions. Benthic production, in terms of total wet weight m–2 and macroinvertebrate density in each study area, was generally greater in the more eutrophic areas. However, fewer taxa were supported in these areas. These taxa were generally pollution-tolerant organisms, such as oligochaetes and certain chironomids, which were capable of burrowing into depositional-type substrates. More taxa and greater numbers of gill breathers and filter feeders, such as caddisflies, mayflies, stoneflies, and dipterans, were collected from less eutrophic areas.  相似文献   

15.
Tillotson  Nathan A.  Weber  Michael J.  Pierce  Clay L. 《Hydrobiologia》2022,849(7):1659-1675
Hydrobiologia - Invasive Silver Hypophthalmichthys molitrix and Bighead Carp H. nobilis (collectively bigheaded carp) regularly alter zooplankton communities in lentic systems but dynamics in lotic...  相似文献   

16.
The widespread loss of oak-hickory forests and the impacts of flood have been major issues of ecological interest concerning forest succession in the Upper Mississippi River (UMR) floodplain. The data analysis from two comprehensive field surveys indicated that Quercus was one of the dominant genera in the UMR floodplain ecosystem prior to the 1993 flood and constituted 14% of the total number of trees and 28% of the total basal area. During the post-flood recovery period through 2006, Quercus demonstrated slower recovery rates in both the number of trees (4%) and basal area (17%). In the same period, Carya recovered greatly from the 1993 flood in terms of the number of trees (11%) and basal area (2%), compared to its minor status before the flood. Further analyses suggested that different species responded to the 1993 flood with varying tolerance and different succession strategies. In this study, the relation of flood-caused mortality rates and DBH, fm(d), can be expressed in negative exponential functions for each species. The results of this research also indicate that the growth functions are different for each species and might also be different between pre- and post-flood time periods. These functions indicate different survival strategies and emergent properties in responding to flood impacts. This research enhances our understanding of forest succession patterns in space and time in the UPR floodplain. And such understanding might be used to predict long-term impacts of floods on UMR floodplain forest dynamics in support of management and restoration.  相似文献   

17.
SUMMARY. Colonizing aquatic macroinvertebrates were collected from two kinds of artificial substrate placed on wing dams in Pool 13 of the Upper Mississippi River in September 1978. Thirty-one taxa were collected from basket samplers containing cement spheres and twenty-one taxa from multiplate samplers constructed from tempered hardboard. Hydro-psychidae (Trichoptera), especially Cheumatopsyche sp., Potamyla flava and Hydropsyche sp., were the dominant macroinvertebrates which colonized both samplers. Basket samplers had a significantly greater macroinvertebrate density, biomass and number of taxa compared with multiplate samplers. Precision of the arithmetic mean for density, biomass and number of taxa was 19.9, 18.3 and 8.1% for basket samplers and 18.8, 18.7 and 8.5% for multiplate samplers. The number of sampling units required for a precision of 20% for macroinvertebrate density, biomass and number of taxa was 13, 11 and 2 for basket samplers and 11, 11 and 2 for multiplate samplers. Basket samplers with 7.5-cm cement spheres are recommended for use instead of multiplate samplers.  相似文献   

18.
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow–outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l−1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. Handling editor: J. Padisak  相似文献   

19.
20.
Recent terrorist attacks in the USA have generated significant attention in many countries to the threats posed by biological weapons. In response to these events and the spectre of future attacks, bioscientists and professional organizations have begun or intensified asking questions about the possible malign applications of their research. As Part I of a two-part article, this paper surveys how genetics might contribute to the development of novel forms of weaponry. It is further argued that the dilemmas and difficulties facing bioscientists pose pressing and thorny questions for the hitherto agendas and orientations of those concerned with the social, ethical and political implications of genetics. Part II will examine the emerging responses initiated by biomedical organizations and spokespersons in the US and the UK. This will be done with a view to asking how scientific and medical research communities are defining and policing notions of professionalism, responsibility and accountability. On the basis of this, suggested lines for future social analysis will be offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号