首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of thrombin receptors on mouse embryo (ME) cells has been examined by direct fluorescence microscopy using a fluorescein aminelabeled thrombin. Two fluorescein amines, 4-(N-6-aminoethyl thioureal)-fluorescein and 4-(N-6-aminohexyl thioureal)-fluorescein, were synthesized and attached to the carbohydrate moiety of highly purified human α-thrombin by periodate oxidation of the carbohydrate and selective reduction of the Schiff's base using sodium cyanoborohydride. Preparations of fluorescent thrombin with from 1 to 4 fluoresceins per molecule of thrombin retained their ability to proteolytically cleave fibrinogin to form fibrin clots, to bind to thrombin receptors on ME cells, and to initiate cell division. After incubating mitogenic concentrations of the fluorescein amine labeled thrombin with ME cells at 4°C, a diffuse fluorescent pattern was observed over the surface of the ME cells. This diffuse pattern was specific: it was not observed on cells from parallel cultures incubated with fluorescent thrombin plus a 20-fold excess of unlabeled thrombin. Thus, thrombin receptors appear to be distributed randomly over the surface of ME cells prior to interaction with thrombin. Increasing the temperature to 37°C following binding at 4° C resulted in a rapid dissociation of the fluorescent pattern from the cells leaving only the autofluorescent vesicles. This result may reflect the unique ability of thrombin to proteolytically cleave its own receptor.  相似文献   

2.
Loss of sensitivity to thrombin following an initial response is characteristic of a number of cell types, including platelets. It has recently been proposed that thrombin receptors resemble other G protein-coupled receptors, but that activation involves a novel mechanism in which thrombin cleaves the receptor, exposing a new N terminus that serves as the ligand for the receptor. Based upon this model, we have examined the mechanism of thrombin receptor desensitization by comparing the effects of thrombin with those of a peptide corresponding to the N-terminal sequence of the receptor following proteolysis by thrombin: SFLLRNPNDKYEPF or TRP42/55. Like thrombin, TRP42/55 stimulated pertussis toxin-sensitive inositol 1,4,5-trisphosphate formation, raised cytosolic Ca2+, and inhibited cAMP formation in the megakaryoblastic HEL cell line. Exposure to either thrombin or TRP42/55 desensitized the cells to both, but not to a third agonist, neuropeptide Y. The rate of recovery after desensitization depended upon the order of agonist addition. Resensitization of the cell to thrombin following a brief exposure to thrombin required up to 24 h and could be inhibited with cycloheximide. Resensitization to TRP42/55 after exposure to thrombin, or to thrombin after exposure to TRP42/55, on the other hand, was detectable within 30 min and could be inhibited by serine/threonine phosphatase inhibitors, but not by cycloheximide. Loss of responsiveness to thrombin and TRP42/55 was also observed following addition of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). However, while the protein kinase inhibitor staurosporine completely prevented the desensitization caused by TPA, it had only a limited effect on the desensitization caused by TRP42/55. These results demonstrate that the G protein-mediated effects of thrombin can be reproduced by a receptor-derived peptide and suggest that desensitization occurs by at least two mechanisms. The first, which is seen with thrombin, but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.  相似文献   

3.
This study was based on our previous findings that the mitogenic action of thrombin on cultured fibroblasts can result from interaction of thrombin with the cell surface in the absence of internalization, and that the proteolytic activity of thrombin is required for stimulation of cell division. This prompted us to look for thrombin-mediated cleavages using 2-dimensional gel electrophoresis of labeled cell surface proteins. Surface membrane components were labeled by 3 procedures: (1) proteins were labeled by lactoperoxidase-catalyzed iodination using 125I?; (2) galactose and galactosamine residues of glycoproteins were oxidized with galactose oxidase and reduced with 3H-NaBH4; and (3) glycoproteins were metabolically labeled by incubating cells with 3H-fucose. Labeling with the first 2 procedures was carried out after thrombin treatment; in contrast, cells metabolically labeled with 3H-fucose were subsequently treated with thrombin to look for proteolytic cleavages. Collectively, these studies indicated that only about 5 cell surface proteins were thrombin-sensitive, consistent with the high specificity of this protease. Each of the labeling procedures revealed a thrombin-sensitive cell surface glycoprotein which was identified as fibronectin by immunoprecipitation experiments. In addition, cell surface proteins of about 140K and 55K daltons were thrombin-sensitive. However, cell surface proteins of about 45K daltons and 130K to 1 50K daltons were increased after thrombin treatment. These experiments were conducted on an established line of Chinese hamster lung cells with the eventual goal of studying thrombin-mediated cleavages of cell surface proteins in a large number of cloned populations derived from this line that are either responsive or unresponsive to the mitogenic action of thrombin. This approach should permit identification of proteolytic cleavages that are necessary for thrombin-stimulated cell division.  相似文献   

4.
Previous studies have shown that thrombin action at the cell surface is sufficient to bring about division of cultured fibroblast-like cells (Carney and Cunningham, 1978). This prompted the present binding experiments with 125I-thrombin which led to the Identification of a thrombin receptor on the surface of mouse embryo cells. Scatchard plots of binding data at 4, 22 and 37°C were linear over a broad range of thrombin concentrations, indicating a single affinity class of receptors. The association constant was about 1 × 109 M?1 and there were approximately 2 × 105 receptors per cell. Neither insulin, epidermal growth factor nor prothrombin competed for thrombin binding to its receptor, indicating that It was unique for thrombin. Comparisons of thrombin binding and the amount of cell division produced by various concentrations of thrombin indicated that there was a relationship between receptor occupancy and increase in cell number. Low concentrations of serum (0.1%) inhibited both the mitogenic action of thrombin and the specific binding of thrombin to its receptor. It did not, however, inhibit nonspecific association of 125I-thrombin with the cells. Experiments showed that this inhibition by serum resulted from a masking of thrombin receptors on the cells and not from binding of thrombin by serum factors. Together these studies suggest that thrombin must bind to Its surface receptor to stimulate cell division.  相似文献   

5.
The effects of growth factors on inositol-containing phospholipids were investigated to test the hypothesis that alterations in their metabolism are involved in mitogenic stimulation. Thrombin and EGF stimulated comparable increases in the synthesis (30-50%) and degradation (20-40%) of phosphatidylinositol 4-monophosphate (DPI) and phosphatidylinositol 4,5-bisphosphate (TPI) in a cell line which is mitogenically responsive to both growth factors. The increases in synthesis were time and dose dependent in a manner which was consistent with their involvement in mitogenesis; the increases were observed only under conditions where a mitogenic response occurred. While it has been suggested that an increased synthesis of phosphatidylinositol (PI) is coupled to the stimulation of DPI and TPI synthesis, we found that thrombin stimulated an early synthesis PI but EGF did not. To further evaluate the involvement of PI in thrombin-stimulated cell division we determined the time and dose dependence of the stimulated PI synthesis and found that it also occurred in a manner which was consistent with its involvement in thrombin-stimulated cell division. Furthermore, the stimulated PI synthesis was not observed with nonmitogenic proteases or in cell lines which were not responsive to thrombin. These results demonstrate that the metabolism of DPI and TPI appears closely related to the mitogenic response generated by EGF and thrombin. However, an early stimulation of PI synthesis is not coupled to this metabolism and is not necessary for mitogenic stimulation by EGF. Thus, a stimulation of PI synthesis is not a valid measure of alterations in inositol-containing phospholipids and what has been termed the "PI response."  相似文献   

6.
D H Carney  D D Cunningham 《Cell》1978,14(4):811-823
Thrombin covalently linked to carboxylate-modified polystyrene beads initiated division of quiescent chick embryo (CE) cells either in medium containing low levels of serum or in serum-free medium. Release of thrombin was monitored by measuring acid-precipitable radioactivity released from 125I-thrombin beads into the medium during incubation with cells. Even if all of the acid-precipitable material released from the beads were active thrombin, it was not sufficient to account for any of the observed cell division, and was 10-30 fold less than the amount necessary to produce the increase in cell number caused by the thrombin beads. Two other kinds of experiments also showed that material released into the medium did not account for the observed initiation of cell division. First, medium taken from cultures incubated with thrombin beads did not initiate cell division when added to new quiescent cultures. Second, in coverslip experiments where populations of cells with an without thrombin feads shared the same medium, only bead-contacted cells divided. Several results suggested that the material which was released from the thrombin beads resulted from cell-associated proteolysis rather than from "leakage" of intact thrombin from the beads. For example, after incubating 125I-thrombin beads with or without CE cells, we were unable to detect any intact thrombin released into the medium. In addition, most of the material released from the beads was acid-soluble and was only released in the presence of CE cells. A few thrombin beads were endocytosed by CE cells, but they were surrounded by an intact plasma membrane. Thus they did not directly interact with the cytoplasm. The close association of many of the beads with the cell surface and the presence of a few beads in endocytic vesicles made it important to consider the possibility that thrombin might be released from the beads directly into the cells. This possibility was explored using ultrastructural (EM) autoradiography. With this technique (where one grain represented 700--900 thrombin molecules), we found that beads inside the cells had approximately the same number of grains as beads not in contact with cells. This suggested that little, if any, additional radioactive material had been released from the beads which were in contact with the cells. In addition, we were unable to detect any grains in the cytoplasm which could be attributed to released thrombin, even using an amount of 125I-thrombin beads which was 8 fold greater than the amount which produced maximal cell division. Taken together, these results provide direct evidence that thrombin action at the cell surface is sufficient to initiate division of CE cells.  相似文献   

7.
Key hemostatic serine proteases such as thrombin and activated protein C (APC) are signaling molecules controlling blood coagulation and inflammation, tissue regeneration, neurodegeneration, and some other processes. By interacting with protease-activated receptors (PARs), these enzymes cleave a receptor exodomain and liberate new amino acid sequence known as a tethered ligand, which then activates the initial receptor and induces multiple signaling pathways and cell responses. Among four PAR family members, APC and thrombin mainly act via PAR1, and they trigger divergent effects. APC is an anticoagulant with antiinflammatory and cytoprotective activity, whereas thrombin is a protease with procoagulant and proinflammatory effects. Hallmark features of APC-induced effects result from acting via different pathways: limited proteolysis of PAR1 localized in membrane caveolae with coreceptor (endothelial protein C receptor) as well as its targeted proteolytic action at a receptor exodomain site differing from the canonical thrombin cleavage site. Hence, a new noncanonical tethered PAR1 agonist peptide (PAR1-AP) is formed, whose effects are poorly investigated in inflammation, tissue regeneration, and neurotoxicity. In this review, a concept about a role of biased agonism in effects exerted by APC and PAR1-AP via PAR1 on cells involved in inflammation and related processes is developed. New evidence showing a role for a biased agonism in activating PAR1 both by APC and PAR1-AP as well as induction of antiinflammatory and cytoprotective cellular responses in experimental inflammation, wound healing, and excitotoxicity is presented. It seems that synthetic PAR1 peptide-agonists may compete with APC in controlling some inflammatory and neurodegenerative diseases.  相似文献   

8.
A brush-border membranal proteinase, which specifically clips the catalytic subunit of cAMP-dependent protein kinase, is shown to cleave the receptor for the epidermal growth factor (EGF) (Mr = 170,000) into two fragments of Mr = 140,000 and 30,000. The 140-kDa fragment retains its EGF-binding site and its EGF-dependent protein tyrosine kinase activity on exogenous substrates, but it loses its capacity to undergo self-phosphorylation. It is shown to be distinct from the 150-kDa fragment of the EGF receptor obtained by the Ca2+-activated neutral proteinase. The membranal proteinase strictly recognizes the native structure of the receptor and fails to cleave either the denatured receptor or its 150-kDa degradation product. Thus the membranal proteinase acts as a conformation-recognizing probe for both the protein-tyrosine kinase domain of the EGF receptor and the catalytic subunit of cAMP-dependent protein-Ser/Thr kinase, suggesting that the known sequence homology between these two kinases is also reflected in their conformation. The well defined 140-kDa fragment described here is useful for structure-function studies of the EGF receptor.  相似文献   

9.
Thrombin stimulation of human platelets is associated with turnover of inositol phospholipids, mobilization of intracellular Ca2+ stores, and activation of protein kinase C. However, within 5 minutes, the thrombin receptor desensitizes, but can be re-coupled to its effectors by stimulation of alpha 2-adrenergic receptors (Crouch and Lapetina, J. Biol. Chem. 263, 3363-3371, 1988). This effect of epinephrine was found to be inhibited by preincubation of platelets with phorbol ester, suggesting that protein kinase C was inhibitory. However, since thrombin also activated protein kinase C and epinephrine was active following thrombin stimulation of platelets, this implied that thrombin activation of protein kinase C may have been spacially isolated near the thrombin receptor and could not inactivate alpha 2-receptor activity. In the present paper, we have tested this possibility, and we present evidence which strongly favours the possibility that protein kinase C activation by receptors induces its local translocation to the cell membrane.  相似文献   

10.
The common neurotrophin receptor (p75(NTR) ) regulates various functions in the developing and adult nervous system. Cell survival, cell death, axonal and growth cone retraction, and regulation of the cell cycle can be regulated by p75(NTR) -mediated signals following activation by either mature or pro-neurotrophins and in combination with various co-receptors, including Trk receptors and sortilin. Here, we review the known functions of p75(NTR) by cell type, receptor-ligand combination, and whether regulated intra-membrane proteolysis of p75(NTR) is required for signalling. We highlight that the generation of the intracellular domain fragment of p75(NTR) is associated with many of the receptor functions, regardless of its ligand and co-receptor interactions.  相似文献   

11.
The G protein-coupled thrombin receptor can induce cellular responses in some systems by transactivating the epidermal growth factor (EGF) receptor. This is in part due to the stimulation of ectoproteases that generate EGF receptor ligands. We show here that this cannot account for the stimulation of proliferation or migration by thrombin of Swiss 3T3 cells. Thrombin has no direct effect on the activation state of the EGF receptor or of its downstream effectors. However, thrombin induces the subcellular clustering of the EGF receptor at filamentous actin-containing structures at the leading edge and actin arcs of migrating cells in association with other signaling molecules, including Shc and phospholipase Cgamma1. In these thrombin-primed cells, the subsequent migratory response to EGF is potentiated. Thrombin did not potentiate the EGF-stimulated EGF receptor phosphorylation. Thus, in Swiss 3T3 cells the G protein-coupled thrombin receptor can potentiate the EGF tyrosine kinase receptor response when activated by EGF, and this appears to be due to the subcellular concentration of the receptor with downstream effectors and not to the overall ability of EGF to induce receptor transphosphorylation. Thus, the EGF receptor subcellular localization which is altered by thrombin appears to be an important determinant of the efficacy of downstream EGF receptor signaling in cell migration.  相似文献   

12.
Two different clones of Swiss 3T3 cells belonging to the same original cell line have been obtained, one of which was unresponsive to mitogenic stimulation (e.g. insulin-like growth factor-I, bombesin, insulin-like growth factor-I + bombesin), while the other clone showed a very high rate of DNA synthesis under identical conditions as demonstrated by 5-bromodeoxyuridine incorporation. Both types of cells expressed the IGF-I receptor and showed high contact inhibition. When highly purified nuclei from responsive cells, treated for a short time with bombesin and insulin-like growth factor-I or insulin-like growth factor-I alone, were incubated with [gamma-32P]adenosine triphosphate, the labelling of phosphatidylinositol-mono- and diphosphate decreased when compared to controls, while this transient effect did not appear in the nuclei from unresponsive cells. Similarly nuclear protein kinase C is activated only in responsive cells. Therefore, it seems that a direct link exists between polyphosphoinositide metabolism, protein kinase C activation and the early events leading to cell division, since the rapid changes in the labelling of both phosphatidylinositol mono- and di-phosphate occur only in nuclei from Swiss 3T3 cells, which respond to the mitogenic stimulus determined by insulin-like growth factor-I on its own, or in combination with bombesin.  相似文献   

13.
Activated protein C (APC), a natural anticoagulant protease, can trigger cellular responses via protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin. Whether this phenomenon contributes to the physiological effects of APC is unknown. Toward answering this question, we compared the kinetics of PAR1 cleavage on endothelial cells by APC versus thrombin. APC did cleave PAR1 on the endothelial surface, and antibodies to the endothelial protein C receptor inhibited such cleavage. Importantly, however, APC was approximately 10(4)-fold less potent than thrombin in this setting. APC and thrombin both triggered PAR1-mediated responses in endothelial cells including expression of antiapoptotic (tumor necrosis factor-alpha-induced a20 and iap-1) and chemokine (interleukin-8 (il-8) and cxcl3) genes, but again, APC was approximately 10(4)-fold less potent than thrombin. The addition of zymogen protein C to endothelial cultures did not alter the rate of PAR1 cleavage at low or high concentrations of thrombin, and PAR1 cleavage was substantial at thrombin concentrations too low to trigger detectable conversion of protein C to APC. Thus, locally generated APC did not contribute to PAR1 cleavage beyond that effected by thrombin in this system. Although consistent with reports that sufficiently high concentrations of APC can cleave and activate PAR1 in culture, our data suggest that a significant physiological role for PAR1 activation by APC is unlikely.  相似文献   

14.
The initial step in the signaling cascade of the growth factor activin involves its binding to the extracellular domain of the activin type II receptor. This receptor domain contains 10 cysteine residues which are engaged in intramolecular disulfide bonds. To elucidate the structural framework of this domain we have characterized its disulfide-bonding pattern using an extracellular fragment of the receptor which binds activin A with high affinity. By combining proteolysis with mass spectroscopy and chemical sequence analysis, the disulfide connectivity was determined to be as follows: C1–C3, C2–C4, C5–C8, C6–C7, and C9–C10. A similar disulfide arrangement occurs in a family of snake toxins for which the three-dimensional structure is known.  相似文献   

15.
The glycoprotein thrombospondin is distributed between the extracellular matrix and the platelet-sequestered pool in the resting state and it undergoes redistribution upon platelet stimulation. It is believed to play a role in matrix structure and in coagulation. We have studied the structural domains of endothelial cell (EC) thrombospondin by use of the serine proteases thrombin, trypsin and chymotrypsin and have characterized the heparin-binding domains of this molecule. For this purpose we used purified thrombospondin synthesized and secreted by bovine aortic endothelial cells grown in the presence of radiolabeled methionine. We find that the susceptibility of EC thrombospondin to proteolysis is five-fold smaller than that of platelet thrombospondin. In the presence of 2 mM Ca ions the molecule is cleaved by 20 U/ml thrombin at a single locus, to yield fragments of 160 kDa and 35 kDa. Trypsin digestion for 5 min at room temperature at an enzyme-to-substrate ratio of 1:20 produces a stable fragment of 140 kDa but not the 30-kDa fragment observed in platelet thrombospondin. Chymotrypsin, under identical conditions to those used for trypsin, cleaves EC thrombospondin into four stable fragments of 160 kDa, 140 kDa, 27 kDa and 18 kDa. Chelation of Ca by EDTA increases susceptibility of the molecule to proteolysis. Under the conditions used a cryptic thrombin-cleavage site, not hitherto observed in platelet thrombospondin, was observed in EC thrombospondin. The location of this site is near a chymotrypsin-susceptible site, which has been observed in the long connecting arm, which is particularly Ca-stabilized. Heparin-binding capacity of EC thrombospondin was observed in at least two separate loci. Both thrombin and chymotrypsin produced small fragments (35 kDa and 27 kDa respectively) which bound to heparin with high affinity, and large fragments (160 kDa for thrombin and 140 kDa for chymotrypsin) which had low affinity. Chelation of Ca substantially decreased the low-affinity binding of the large fragments but not the high-affinity binding of the small fragments. Two-dimensional gel electrophoresis of the chymotryptic heparin-binding fragments shows that each molecule gave rise to a heterogeneous array of fragments of high molecular mass bound by disulfide bonds, indicating that there is a difference in the rate of cleavage between the three subunits of EC thrombospondin. Trypsin, despite its limited degradation, completely eliminated the heparin-binding capacity of both high and low-affinity loci, in contrast to platelet thrombospondin where the high affinity remains intact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Platelet glycoprotein (GP) Ibalpha is a component of the GPIb-IX receptor complex, which is involved in multiple physiological and pathological processes, including platelet adhesion at sites of vascular injury, thrombin binding, Bernard-Soulier syndrome, platelet-type von Willebrand disease, and immune-mediated thrombocytopenias. The amino-terminal domain of approximately 300 residues of GPIbalpha mediates both normal biological function (by providing the sites for direct ligand interaction) and aberrant function (through amino acid substitutions). To investigate the molecular interactions mediated by this region of GPIbalpha, we have developed a recombinant baculovirus to facilitate its expression as a calmodulin fusion protein from insect cells. By employing the calmodulin tag, the fusion protein could be obtained at >90% purity after a single isolation step at yields of 8 mg/L of insect cell medium (purified fusion protein). The recombinant GPIbalpha fragment was shown to be posttranslationally sulfated and glycosylated, although its glycosylation differed from that of the equivalent GPIbalpha fragment isolated from human platelets. The differential glycosylation, however, did not affect the function of the recombinant GPIbalpha fragment in either von Willebrand factor (vWf) or thrombin binding as these were both found to be identical to those of the same-length GPIbalpha fragment derived from human platelets. The calmodulin tag was also exploited in the development of assays to measure directly vWf and thrombin binding, since it did not interfere with either, demonstrating the feasibility for the use of this soluble receptor fusion protein in detailed biophysical assays to investigate the molecular mode of binding of platelet glycoprotein Ibalpha to these ligands.  相似文献   

17.
Single-chain urokinase-type plasminogen activator (scu-PA) is cleaved by thrombin, resulting in an inactive molecule called thrombin-cleaved two-chain urokinase-type plasminogen activator (tcu-PA/T). There is no knowledge about cell-mediated inactivation of scu-PA. We have studied whether scu-PA bound to cultured human umbilical vein endothelial cells (HUVEC) could be inactivated by thrombin. High molecular weight scu-PA was bound to HUVEC and incubated with increasing amounts of thrombin for 30 min at 37 degrees C. Cell-bound urokinase-type plasminogen activator (u-PA) was released and levels of scu-PA, tcu-PA/T and active two-chain u-PA were measured using sensitive bioimmunoassays. Cell-bound scu-PA was efficiently inactivated by thrombin. Fifty percent inactivation of scu-PA occurred at about 0.2 nM thrombin. In the presence of monoclonal anti-urokinase receptor IgG, at least 50% of the binding of scu-PA to HUVEC was inhibited. The relative amount of tcu-PA/T that was generated by thrombin was not affected by the monoclonal antibody. These results indicated that scu-PA bound to HUVEC via the urokinase receptor can be inactivated by thrombin. The efficient inactivation of cell-bound scu-PA suggests that a cofactor for thrombin may be involved, like thrombomodulin or glycosaminoglycans. It is concluded that scu-PA bound to the urokinase receptor on a cell surface can be inactivated by thrombin, which may have profound effects on u-PA-mediated local fibrinolysis and extracellular proteolysis during processes in which thrombin is also involved.  相似文献   

18.
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for the coagulant protease thrombin, is irreversibly activated by proteolysis. Unactivated PAR1 cycles constitutively between the plasma membrane and intracellular stores, thereby providing a protected receptor pool that replenishes the cell surface after thrombin exposure and leads to rapid resensitization to thrombin signaling independent of de novo receptor synthesis. Here, we show that AP2, a clathrin adaptor, binds directly to a tyrosine-based motif in the cytoplasmic tail of PAR1 and is essential for constitutive receptor internalization and cellular recovery of thrombin signaling. Expression of a PAR1 tyrosine mutant or depletion of AP2 by RNA interference leads to significant inhibition of PAR1 constitutive internalization, loss of intracellular uncleaved PAR1, and failure of endothelial cells and other cell types to regain thrombin responsiveness. Our findings establish a novel role for AP2 in direct regulation of PAR1 trafficking, a process critically important to the temporal and spatial aspects of thrombin signaling.  相似文献   

19.
Terumasa Hibi 《FEBS letters》2009,583(8):1299-1303
Reelin is a large secreted glycoprotein essential for brain formation, but its trafficking and function at the molecular level remain incompletely understood. After binding to its receptor, Reelin is internalized by endocytosis. Here we show that internalized Reelin is subject to specific proteolysis within the cell and its N-terminal fragment is re-secreted. This re-secretion is inhibited by bafilomycin A1 or by expression of a mutant of Rab11, a regulator of the recycling pathway. As the N-terminal fragment does not bind to Reelin receptor but has homology to F-spondin, its recycling may be involved in the regulation of extracellular matrix.  相似文献   

20.
The extracellular N terminus of the endothelin B (ET(B)) receptor is susceptible to limited proteolysis (cleavage at R64 downward arrow S65), but the regulation and the functional consequences of the proteolysis remain elusive. We analyzed the ET(B) receptor or an ET(B)-GFP fusion protein stably or transiently expressed in HEK293 cells. After incubation of cells at 4 degrees C, only the full-length ET(B) receptor was detected at the cell surface. However, when cells were incubated at 37 degrees C, N-terminal cleavage was observed, provided endothelin 1 was present during the incubation. Cleavage was not inhibited by internalization inhibitors (sucrose, phenylarsine oxide). However, in cells incubated with both internalization inhibitors and metalloprotease inhibitors (batimastat, inhibitor of TNFalpha-convertase) or metal chelators (EDTA, phenanthroline), the cleavage was blocked, indicating that metalloproteases cleave the agonist-occupied ET(B) receptor at the cell surface. Functional analysis of a mutant ET(B) receptor lacking the first 64 amino acids ([Delta2-64]ET(B) receptor) revealed normal functional properties, but a 15-fold reduced cell surface expression. The results suggest a role of the N-terminal proteolysis in the regulation of cell surface expression of the ET(B) receptor. This is the first example of a multispanning membrane protein, which is cleaved by a metalloprotease, but retains its functional activity and overall structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号