首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the neurodepressing hormone (NDH) was studied on different identified motoneurons in the abdominal ganglia of the crayfish Procambarus bouvieri (Ortmann). Although differences in sensitivity were apparent, all the neurons tested responded to NDH with a reduction in spontaneous firing rate, which lasted as long as NDH was present, and, depending on the concentration and time of action of the hormone, for even longer periods. NDH activity was determined in the various parts of the central nervous system of the crayfish, being highest in the eyestalk, gradually diminishing away from the eyestalk, with a cephalo-caudal gradient, being lowest in the abdominal ganglia. High levels of NDH activity were detected in the blood. After eyestalk ablation, NDH concentration steadily diminishes in the blood and central nervous system, until virtually disappearing after 4 days; from day 5 onwards, the activity is recovered up to its original levels. NDH synthesis takes place with a time constant of approximately 3 hr in cultured isolated segments of central nervous system, being highest in the eyestalk.  相似文献   

2.
Summary The production of ecdysteroids (monitored by RIA) by Y-organs and cephalic glands in vitro was measured and hemolymph ecdysteroid levels were determined in the crayfish,Orconectes limosus, both after eyestalk ablation and as a function of time during natural premolt. Y-organ synthesis of ecdysteroid increased in parallel with a rise in hemolymph ecdysteroid concentrations under both conditions, peaking in substage D2 of premolt. Y-organ ecdysteroid output after eyestalk ablation was 3–4 times higher. Thus, removal of the inhibiting system of the eyestalk effectively removes not only the principal control but also any modulation of ecdysteroid secretion by the Y-organs. Ecdysteroid levels remained low in Y-organ-ectomized crayfish, although premolt was initiated in some animals. The cephalic gland does not appear to contribute to the regulation of molting inOrconectes limosus. The Y-organs, on the other hand, are a principal source of ecdysteroids which regulate the major synthetic activities of premolt.  相似文献   

3.
Neuroendocrine Correlates of Circadian Rhythmicity in Crustaceans   总被引:1,自引:0,他引:1  
The secretion of neurohormones from the crustacean X-organ –sinus gland system is controlled by environmental influences,light being the most conspicuous. Two sets of photoreceptorsappear to mediate the influence of light on neurosecretion basedon intracellular recordings from X-organ neurons and estimationsof hormone release. Extra-retinal photoreceptors can initiateneurohormonal release from the eyestalk. Neurosecretory activity is also influenced by putative neurotransmitters.GABA is found in high concentrations in the medulla temninalisof the eyestalk and is released by stimulation, in a calcium-dependentmanner. Diurnal variations occur in the amounts of eyestalk neurohormones,either those present in the eyestalk or released by electricalstimulation of the isolated sinus gland. Rhythm phases varyfrom one hormone to another. Neurohormones secreted in the eyestalkare also found in other regions of the central nervous system.Rhythms of neurosecretion are present both in the secretionin the isolated eyestalk and in eyestalkless animals, thus indicatingthat rhythmicity is a distributed property of the neurosecretorysystem.  相似文献   

4.
SYNOPSIS. The neuroendocrine system of crustaceans, crayfishin particular, has been extensively studied. As among vertebrates,a wide variety of processes are hormonally regulated, includingreproduction, growth, carbohydrate metabolism and color changes.The sinus gland, a neurohemal organ in the crayfish eyestalk,is the major neuroendocrine center. Herein, crayfish reproductivecycles and their hormonal control, particularly by the gonad-stimulatingand gonad/inhibiting hormones, are a major focus. In addition,the aminergic and peptidergic neuroregulators identified incrayfish central nervous organs that either have been or likelymay be shown to have neurotransmitter/neuromodulator roles incontrolling hormone release are discussed with respect to localizationand identified roles.  相似文献   

5.
PC2 prohormone convertases are enzymes involved in the proteolytic maturation of neuropeptide precursors. In the present work, a cDNA encoding a PC2-like enzyme (OrlPC2) was cloned from crayfish eyestalk ganglia (medulla terminalis) containing the X-organ, a major neuroendocrine center. The predicted 634 amino acid preproprotein exhibits highest sequence identity, especially in the catalytic domain, with PC2s from arthropods and nematodes, and less with mollusc and vertebrate enzymes. It was demonstrated by in situ hybridization on crayfish medulla terminalis sections that OrlPC2 is expressed in a large number of neuron perikarya, including those producing the well known crustacean hyperglycemic hormone.  相似文献   

6.
Immunohistochemistry was used to identify the distribution of both APGWamide-like and RFamide-like peptides in the central nervous system (CNS) and ovary of the mature female giant freshwater prawn, Macrobrachium rosenbergii. APGWamide-like immunoreactivity (ALP-ir) was found only within the sinus gland (SG) of the eyestalk, in small- and medium-sized neurons of cluster 4, as well as their varicosed axons. RFamide-like immunoreactivity (RF-ir) was detected in neurons of all neuronal clusters of the eyestalk and CNS, except clusters 1 and 5 of the eyestalk, and dorsal clusters of the subesophageal, thoracic, and abdominal ganglia. The RF-ir was also found in all neuropils of the CNS and SG, except the lamina ganglionaris. These immunohistochemical locations of the APGWamide-like and RF-like peptides in the eyestalk indicate that these neuropeptides could modulate the release of the neurohormones in the sinus gland. The presence of RFamide-like peptides in the thoracic and abdominal ganglia suggests that it may act as a neurotransmitter which controls muscular contractions. In the ovary, RF-ir was found predominantly in late previtellogenic and early vitellogenic oocytes, and to a lesser degree in late vitellogenic oocytes. These RFs may be involved with oocyte development, but may also act with other neurohormones and/or neurotransmitters within the oocyte in an autocrine or paracrine manner.  相似文献   

7.
Farnesoic acid O-methyltransferase (FAMeT) catalyzes the conversion of farnesoic acid (FA) to methylfarnesoate (MF) by the mandibular organ (MO) of crustaceans. Here we report the cellular localization of FAMeT and radiochemical assay of endogenous FAMeT activity in shrimp (Metapenaeus ensis) and crayfish (Procambarus clarkii) tissues. As in the eyestalk (ES), FAMeT is concentrated in specific neurosecretory cells of the ventral nerve cord (VNC) whereas only weak FAMeT immunoreactivity was observed in the MO. FAMeT was also detected in the ventral nerve cord, heart (HET), eyestalk, and muscle of the juvenile shrimp. Although the VNC shows the greatest FAMeT immunoreactivity, the heart extract exhibited the highest FAMeT enzymatic activity. These results suggest that FAMeT in the VNC may be inactive or inactivated at the stages of development tested. Contrary to the previous reports in other crustaceans, MO extract in shrimp shows only low FAMeT activity. The eyestalk, epidermis, ovary and testis show appreciable FAMeT activity. The presence of FAMeT in neurosecretory cells of VNC and eyestalk of shrimp and crayfish implies a possible interaction of FAMeT with the eyestalk CHH-family of neuropeptides. The widespread activity of FAMeT suggests that it has a wide spectrum of action in many tissues that contribute to the function and regulation of MF synthesis in shrimp and crayfish.  相似文献   

8.
The production of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated by a neuropeptide, molt-inhibiting hormone. It is generally agreed that molt-inhibiting hormone is produced and released by the eyestalk neuroendocrine system. In the present study, immunocytochemical methods were used to detect molt-inhibiting hormone immunoreactive neurons in eyestalk ganglia of the blue crab, Callinectes sapidus. The primary antiserum used was generated against molt-inhibiting hormone of the green shore crab, Carcinus maenas. A preliminary Western blot analysis indicated the antiserum binds molt-inhibiting hormone of Callinectes sapidus. Using confocal and conventional immunofluorescence microscopy, molt-inhibiting hormone immunoreactivity was visualized in whole mounts and thin sections of Callinectes sapidus eyestalk ganglia. Immunoreactivity was detected in 15-25 neurosecretory cell bodies in the medulla terminalis X-organ, their associated axons and collateral branches, and their axon terminals in the neurohemal sinus gland. The cellular organization of molt-inhibiting hormone immunoreactive neurons in blue crabs is generally similar to that reported for other crab species. The combined results suggest the cellular structure of the molt-inhibiting hormone neuroendocrine system is highly conserved among brachyurans.  相似文献   

9.
The effects of dopamine on crustacean hyperglycemic hormone (CHH) release and hemolymph glucose levels in the crayfish Procambarus clarkii were investigated. A quantitative sandwich enzyme-linked immunosorbent assay (ELISA) using antibodies specific for Prc CHH was developed and characterized. The sensitivity of the ELISA was about 1 fmol/well. Specific measurement of CHH in hemolymph samples by the ELISA was demonstrated by the parallelism between CHH standard curve and sample (hemolymph) titration curve. Moreover, thermally stressed P. clarkii exhibited a characteristic change of hemolymph CHH levels as revealed by the ELISA. CHH and glucose levels increased significantly within 30 min of dopamine injection, peaked at 1 h, and returned to the basal levels at 4 h. Dose-dependent effects of dopamine on CHH and glucose levels were observed between 10(-8) to 10(-6) mol/animal. Dopamine-induced increases in CHH and glucose levels were absent in eyestalk-ablated animals. Finally, dopamine significantly stimulated the release of CHH from in vitro incubated eyestalk ganglia. These results suggest that dopamine enhances release of CHH into hemolymph that in turn evokes hyperglycemic responses and that the predominant site of dopamine-induced CHH release is the X-organ-sinus gland complex located within the eyestalk.  相似文献   

10.
Summary Immunocytochemical staining demonstrates striking differences in staining intensity among individual crustacean hyperglycemic hormone (CHH)-producing cells in the eyestalk of the crayfish Astacus leptodactylus. Based on these differences we arbitrarily subdivided the CHH-cells into three categories representing increasing immunoreactivity respectively: + cells, + + cells, and + + + cells. Electron microscopic investigations reveal that these differences in immunostaining are correlated with differences in the numerical density of the neurosecretory granules in the cytoplasm and that these may reflect differences in activity among the CHH-cells. Morphometric analyses at the light- and electron-microscopic levels indicate that the three distinguished categories of immunopositive cells represent different stages in the CHH-synthesizing process of the cells. The results of the present study demonstrate the application of the PAP-technique at the light-microscopic level as a method to obtain information pertaining to the dynamics of secretory activity of the CHH-cells.  相似文献   

11.
The present study describes the localization and distribution of thyroid-stimulating hormone (TSH), thyroglobulin (TGB) and their receptors in Eisenia fetida (Annelida, Oligochaeta) as revealed by immunohistological methods. Immunopositive neuronal and non-neuronal cells are present in both the central nervous system and some peripheral organs (e.g. foregut and coelomocytes). TSH- and TGB-immunopositive neurons in the various ganglia of the central nervous system are differentailly distributed. Most of the immunoreactive cells are found in the suboesophageal ganglion. The stained cells also differ in their shapes (round, oval, pear-shaped) and sizes (small, 12–25 μm; medium, 20–35 μm; large, 30–50 μm). In all ganglia of the central nervous system, TSH-positive neurons additionally show gamma aminobutyric acid (GABA) immunopositivity. Non-neuronal cells also take part in hormone secretion and transport. Elongated TSH-positive cells have been detected in the capsule of the central ganglia and bear granules or vacuoles in areas lacking neurons. Many of capillaries show immunoreactivity for all four tested antibodies in the entire central nervous system and foregut. Among the coelomocytes, granulocytes and eleocytes stain for TSH and its receptor and for TGB but not for thyroid hormone receptor. Most of the granulocytes are large (25–50 μm) but a population of small cells (10–25 μm) are also immunoreactive. None of the coelomocytes stain for GABA. We therefore suggest that the members of this hormone system can modify both metabolism and immune functions in Eisenia. Coelomocytes might be able to secrete, transport and eliminate hormones in this system.This work was supported by the MTA-PTE Adaptation Biology Research Group and National Research and Developmental Fund (NKP 1/048/2001). M.W. is in receipt of a János Bolyai Scholarship.  相似文献   

12.
These studies investigate if crustacean hyperglycemic hormone (CHH) is involved in 5-hydroxytryptamine (5-HT)-induced hyperglycemia. Eyestalk ganglia with intact X-organ-sinus gland complex were dissected from the crayfish Procambarus clarkii and incubated under various experimental conditions. Incubation media were then analyzed for the presence of released hyperglycemic factor using an in vivo bioassay. The results show that 5-HT enhanced release of hyperglycemic factor in a dose-dependent manner. This stimulatory effect of 5-HT was significantly decreased by adding ketanserin or methysergide (both 5-HT receptor antagonists) into incubation of eyestalk ganglia. Further, activity of the 5-HT-released hyperglycemic factor could be eliminated by adsorption of incubation media with anti-CHH serum but not by preimmune or anti-5-HT serum. These results confirm the hypothesis that 5-HT enhances release of CHH, which in turn elicits hyperglycemic responses. It is probable that 5-HT activates an excitation-secretion coupling mechanism by interacting with receptors located on the X-organ neurosecretory cells.  相似文献   

13.
Dopaminergic Modulation of Neurosecretory Cells in the Crayfish   总被引:2,自引:0,他引:2  
The main aims of this paper are (a) to locate possible dopaminergic neurons in the eyestalk with anti-tyrosine hydroxylase antibodies, (b) to search for the presence of dopamine (DA) in the nervous structures of the eyestalk, (c) to explore its release, and (d) to test the effect of DA on neurosecretory cells in the eyestalk.Experiments were performed in adult crayfishes Procambarus clarkii, in isolated optic peduncle. Immunocytochemistry was made with the antibody against its precursor synthesizing enzyme tyrosine-hydroxylase. The content and release studies of DA were made using high performance liquid chromatography (HPLC). Extracellular and intracellular recordings were conducted with conventional recording techniques.A large number (2000) of immunopositive somata of different sizes and shapes were identified in various regions of the eyestalk. The majority of somata are of the smallest size (5–25 m diameter). DA content in the eyestalk was 5.6 ± 0.1 pmol per structure; the greatest content is in the MT (over 60%). A basal level release of DA was observed. Incubation of eyestalks in solution containing a high K+ concentration increased the DA release (79%). Two effects of DA on the excitability of X-organ neurons were observed; an excitatory effect on neurons of 25 m somata diameter and another inhibitory effect in the group of 35-m somata diameter neurons. The excitation occurs with a depolarization and decrement of membrane conductance in the cell soma while the inhibition occurs with a hyperpolarization and increment of membrane conductance in soma.We concluded the following: (1) Dopamine is present in each optic ganglia of the crayfish eyestalk. (2) There is a basal release of DA from the isolated eyestalk. (3) DA release is enhanced threefold by eyestalk incubation in 40 mM [K+] solution. (4) DA selectively excites a population of neurons with low-speed conduction axons, and small somata in the X-organ–sinus gland system, while inhibiting another population characterized by higher axonal conduction speed and large somata. (5) These observations support a role for DA as a neurotransmitter or neuromodulator in the X-organ neurons of the crayfish eyestalk.Dr. Hugo Aréchiga died on September 15th of 2003  相似文献   

14.
15.
16.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

17.
Summary Polyclonal antibodies were raised in rabbits against synthetic crustacean cardioactive peptide (CCAP) conjugated to bovine thyroglobulin, and were used to map CCAP-immunoreactive structures in the central nervous system of Carcinus maenas. As expected, the neurohemal pericardial organs (PO) displayed abundant immunoreactivity in nerve fibers and terminals. In addition, immunoreactive neurons were demonstrated in other parts of the nervous system. At least some of them do not appear to terminate in neurohemal structures and may have a non-endocrine, as yet unknown function. Immunoreactive perikarya with a diameter of 25–30 m occur in the brain. They project into the optic and antennary neuropil, and into the eyestalk. One cell was found in the medulla terminalis of the eyestalk and in the connective ganglion, respectively. From the latter, axonal branches could be traced into the brain and the thoracic ganglia (TG). In the TG, small-diameter perikarya give rise to extensive networks of varicose fibers. Some of the perikarya occur in a characteristic paired arrangement with larger CCAP-immunoreactive somata (diameter 40–50 m). These pairs of one small and one large cell occur in all mouthpart and leg segments of the TG, except the abdominal ganglia (AG), where only large cells were found. The main projections of the large neurons comprise one or more fibers in each of the seven segmental nerves (SN), leading to neurosecretory terminals in the PO. The fibers in the SN are joined by branches of an ascending axonal tract from the large perikarya in the AG. The large-type perikarya are considered to be the principal source of CCAP in the PO. The optic ganglia in the eyestalk, except the medulla terminalis, the neurohemal sinus gland and the stomatogastric nervous system are devoid of CCAP-immunoreactivity.In axon terminals of the PO, CCAP is not colocalized with other PO-neuropeptides, i.e. proctolin-, FMRFamide-like, and Leu-enkephalin-like immunoreactive materials. Electron-microscopic immunocytochemistry revealed a distinct CCAP-containing granule type in specific axon profiles and terminals in the PO.The architecture of CCAP-immunoreactive neurons is discussed with respect to previous morphological studies on the origin and pathways of fibers terminating in the PO.Dedicated to Professor K.E. Wohlfarth-Bottermann, Bonn, on the occasion of his 65th birthday  相似文献   

18.
The properties of cyclic nucleotide phosphodiesterase were studied in soluble and particulate fractions from the central nervous system of Manduca sexta (Lepidoptera: Sphingidae). It was determined that: (1) The highest levels of phosphodiesterase occur in nervous tissue. (2) The total and specific enzyme activities of larval and adult brains are greater than those of the remaining ganglia. (3) Specific central nervous sy stem phosphodiesterase activities of the adult are lower than those of the larva, but both protein and total phosphodiesterase contents are considerably greater in the adult central nervous system. (4) Mg2+ is not absolutely required for either cyclic AMP-phosphodiesterase or cyclic GMP-phosphodiesterase activity. (5) Phosphodiesterase is inhibited by a variety of physiological and non-physiological compounds, nucleoside triphosphates being particularly effective; Some potent inhibitors of mammalian phosphodiesterase are comparatively ineffective toward Manduca sexta phosphodiesterase. (6) Kinetic analyses of soluble and particulate phosphodiesterase revealed non-linear double-reciprocal plots for the hydrolysis of both cyclic AMP and cyclic GMP, with Michaelis constants of approximately 10 mu M and 20 mu M; (7) The hydrolysis of both cyclic nucleotides appears in part to be the function of a single enzyme or related enzymes in the insect central nervous system. It follows that the intracellular level of one cyclic nucleotide may influence the concentration of the other by inhibiting its DEGRADATION.  相似文献   

19.
20.
We investigated how the physiological characteristics and synaptic activities of nonspiking giant interneurons (NGIs), which integrate sensory inputs in the brain and send synaptic outputs to oculomotor neurons innervating eyestalk muscles, changed after unilateral ablation of the statocyst in order to clarify neuronal mechanisms underlying the central compensation process in crayfish. The input resistance and membrane time constant in recovered animals that restored the original symmetrical eyestalk posture 2 weeks after operation were significantly greater than those immediately after operation on the operated side whereas in non-recovered animals only the membrane time constant showed a significant increase. On the intact side, both recovered and non-recovered animals showed no difference. The frequency of synaptic activity showed a complex pattern of change on both sides depending on the polarity of the synaptic potential. The synaptic activity returned to the bilaterally symmetrical level in recovered animals while bilateral asymmetry remained in non-recovered ones. These results suggest that the central compensation of eyestalk posture following unilateral impairment of the statocyst is subserved by not only changes in the physiological characteristics of the NGI membrane but also the activity of neuronal circuits presynaptic to NGIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号