首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linoleic acid (LA) is the most abundant polyunsaturated fatty acid found in the Western diet. Cytochrome P450-derived LA metabolites 9,10-epoxyoctadecenoic acid (9,10-EpOME), 12,13-epoxyoctadecenoic acid (12,13-EpOME), 9,10-dihydroxy-12Z-octadecenoic acid (9,10-DiHOME) and 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME) have been studied for their association with various disease states and biological functions. Previous studies of the EpOMEs and DiHOMEs have focused on their roles in cytotoxic processes, primarily in the inhibition of the neutrophil respiratory burst. More recent research has suggested the DiHOMEs may be important lipid mediators in pain perception, altered immune response and brown adipose tissue activation by cold and exercise. The purpose of this review is to summarize the current understanding of the physiological and pathophysiological roles and modes of action of the EpOMEs and DiHOMEs in health and disease.  相似文献   

2.
Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.  相似文献   

3.
The activation of the neutrophil respiratory burst is a two-step process involving an initial 'priming' phase followed by a 'triggering' event. The biochemical mechanisms which underlie these events are yet to be fully elucidated, but the evidence suggests a crucial role for stimulus-induced tyrosine phosphorylation. The enhanced tyrosine phosphorylation observed upon triggering primed cells may reflect an increase in tyrosine kinase activity or a reduction in the levels of the opposing phosphotyrosine phosphatases (PTPases). We have investigated the latter by examining the possibility that lipopolysaccharide (LPS)-induced priming of the neutrophil respiratory burst involves the suppression of cellular PTPase activity. Purified human neutrophils were incubated for 60 min with and without LPS. Priming of the respiratory burst was confirmed by fMet-Leu-Phe-induced cytochrome c reduction. The level of PTPase activity was assessed by dephosphorylation of [32P]RR-src peptide as substrate. Pretreatment of human neutrophils with 200 ng/ml LPS induced a 2.9 +/- 0.3 (mean +/- SEM, n = 3, P = 0.022) fold increase in the fMet-Leu-Phe-triggered respiratory burst. In the same cells, LPS did not induce a significant change in the total cellular PTPase activity (1.02 +/- 0.02-fold, mean +/- SEM, n = 3, P = 0.63). Similarly, stimulation of neutrophils with fMet-Leu-Phe or phorbol myristate acetate did not significantly affect the cellular PTPase activity (P = 0.94 and 0.68, respectively). Our results suggest that suppression of PTPase activity is not the mechanism underlying the priming and/or triggering of the neutrophil respiratory burst.  相似文献   

4.
Respiratory burst activity and phosphorylation of an NADPH oxidase component, p47(phox), during neutrophil stimulation are mediated by phosphatidylinositol 3-kinase (PI-3K) activation. Products of PI-3K activate several kinases, including the serine/threonine kinase Akt. The present study examined the ability of Akt to regulate neutrophil respiratory burst activity and to interact with and phosphorylate p47(phox). Inhibition of Akt activity in human neutrophils by an inhibitory peptide significantly attenuated fMLP-stimulated, but not PMA-stimulated, superoxide release. Akt inhibitory peptide also inhibited hydrogen peroxide generation stimulated by bacterial phagocytosis. A direct interaction between p47(phox) and Akt was shown by the ability of GST-p47(phox) to precipitate recombinant Akt and to precipitate Akt from neutrophil lysates. Active recombinant Akt phosphorylated recombinant p47(phox) in vitro, as shown by (32)P incorporation, by a mobility shift change detected by two-dimensional gel electrophoresis, and by immunoblotting with phospho-Akt substrate Ab. Mutation analysis indicated that 2 aa residues, Ser(304) and Ser(328), were phosphorylated by Akt. Inhibition of Akt activity also inhibited fMLP-stimulated neutrophil chemotaxis. We propose that Akt mediates PI-3K-dependent p47(phox) phosphorylation, which contributes to respiratory burst activity in human neutrophils.  相似文献   

5.
Agonist-activated phosphorylation of neutrophil proteins including p47-phox, a cytosolic component of the respiratory burst oxidase, has been implicated in the signal transduction cascade which leads to activation of the superoxide generating respiratory burst. We have previously reported (J. Biol. Chem. 265, 17550-59) that in a cell-free activation system consisting of cytosol plus plasma membrane from human neutrophils, diacylglycerol acts synergistically with an anionic amphiphile such as sodium dodecyl sulfate (SDS) to augment superoxide generation and assembly of the oxidase, and that p47 phosphorylation can occur under these conditions. Herein, we show that a peptide corresponding to a carboxy terminal sequence of p47-phox is a substrate for phosphorylation both by purified protein kinase C (a mixture of alpha, beta, and gamma forms) and by a distinct kinase or kinases present in neutrophil cytosol. Based on its activator requirements, the neutrophil kinase differs from classical protein kinase C, but may be a protein kinase C variant, based on inhibition by a protein kinase C peptide. Although in the cell-free system phosphorylation occurs under conditions which are similar to those for activation of superoxide generation, phosphorylation is not required for activation (1). Rather, protein assembly or aggregation which occurs under activation conditions may also promote phosphorylation.  相似文献   

6.
The adherence of serum-opsonized yeast to neutrophils results in phagocytosis of these particulate stimuli and activation of the respiratory burst. Both events are mediated or modulated in part by the surface receptors for IgG and complement. The link between the binding of complex particulate stimuli to the cell surface, and the triggering of these neutrophil functions, is not completely understood. We have previously described an anti-human neutrophil, murine monoclonal antibody PMN7C3, which specifically inhibits the respiratory burst of neutrophils stimulated with serum-opsonized yeast. In the present study, we show that the antigen recognized by PMN7C3 (PMN7 antigen) is present on a number of neutrophil proteins, including the recently described group of related leukocyte membrane glycoproteins CR3, LFA-1, and p150,95. The PMN-7 antigen differs from other antigens associated with the C3bi receptor complex (MAC 1, MO 1, OKM1, OKM10) in that it is present only on neutrophils among peripheral blood cells. Furthermore, the binding of PMN7C3 to the neutrophil surface inhibits the activation of the respiratory burst by serum opsonized zymosan without affecting phagocytosis of these particulate stimuli. The cross-linking of cell surface PMN7 antigen by multivalent antibody is associated with the capping and internalization of antigen-antibody complexes, and appears to be necessary for the expression of maximum inhibition of opsonized zymosan-triggered respiratory burst activity. PMN7C3 also binds to a group of granule-associated proteins biochemically distinct from CR3, LFA-1, and p150,95. These granule-associated proteins containing PMN7 antigen can be mobilized to the cell surface with secretion. PMN7 antigen-bearing proteins may play a role in modulating the activation of the respiratory burst associated with phagocytosis of serum-opsonize zymosan.  相似文献   

7.
In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.  相似文献   

8.
The respiratory burst of human neutrophils is primed by a number of pro-inflammatory stimuli, including tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS); however, the mechanism of priming remains unknown. LPS has been shown previously to increase membrane expression of flavocytochrome b(558), a component of the NADPH oxidase. This study shows that TNFalpha also increases membrane expression of flavocytochrome b(558). Mitogen-activated protein kinase (MAPK) modules have been implicated in the action of priming agents. Pharmacologic inhibitors of MAPKs, SB203580 and PD098059, revealed that priming of the respiratory burst and up-regulation of flavocytochrome b(558) are dependent on p38 MAPK but not on extracellular-signal regulated kinase (ERK). TNFalpha and LPS primed respiratory burst activity and increased membrane expression of CD35 and CD66b, specific markers of secretory vesicles and specific granules that contain flavocytochrome b(558), with similar time courses and concentration dependences. These processes also required p38 MAPK but were independent of ERK. TNFalpha failed to prime respiratory burst activity or to increase membrane CD35 expression in enucleated neutrophil cytoplasts. These data suggest that one mechanism by which TNFalpha and LPS prime neutrophil respiratory burst activity is by increasing membrane expression of flavocytochrome b(558) through exocytosis of intracellular granules in a process regulated by p38 MAPK.  相似文献   

9.
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein (SP)-D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, preincubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms either show no effect or inhibit these responses. Furthermore, if neutrophils are preincubated with multimeric SP-D before IAV is added, oxidant responses to the virus are significantly reduced. The ability of SP-D to increase neutrophil uptake of IAV can be dissociated from enhancement of oxidant responses. Finally, several other innate immune proteins that bind to SP-D and/or IAV (i.e., SP-A, lung glycoprotein-340 or mucin) significantly reduce the ability of SP-D to promote neutrophil oxidant response. As a result, the net effect of bronchoalveolar lavage fluids is to increase neutrophil uptake of IAV while reducing the respiratory burst response to virus.  相似文献   

10.
Human polymorphonuclear neutrophils play a key role in host defenses against invading microorganisms. In response to a variety of stimuli, neutrophils release large quantities of superoxide anion (O2.-) in a phenomenon known as the respiratory burst. O2.- is the precursor of potent oxidants, which are essential for bacterial killing and also potentiate inflammatory reactions. Regulation of this production is therefore critical to kill pathogens without inducing tissue injury. Neutrophil production of O2.- is dependent on the respiratory burst oxidase, or NADPH oxidase, a multicomponent enzyme system that catalyzes NADPH-dependent reduction of oxygen to O2.-. NADPH oxidase is activated and regulated by various neutrophil stimuli at infectious or inflammatory sites. Proinflammatory cytokines such as GM-CSF, TNF and IL-8 modulate NADPH oxidase activity through a priming phenomenon. These cytokines induce a very weak oxidative response by PMN but strongly enhance neutrophil release of reactive oxygen species on exposure to a secondary applied stimulus such as bacterial N-formyl peptides. Priming phenomena are involved in normal innate immune defense and in some inflammatory diseases. The mechanisms underlying the priming process are poorly understood, although some studies have suggested that priming with various agonists is regulated at the receptor and post-receptor levels. Resolution of inflammation involves desensitization phenomena and cytokines are involved in this process by various mechanisms. A better understanding of phenomena involved in the regulation of NADPH oxidase could help to develop novel therapeutic agents for inflammatory diseases involving abnormal neutrophil superoxide production.  相似文献   

11.
Hydroxyl radical production by stimulated neutrophils reappraised   总被引:4,自引:0,他引:4  
Release of active oxygen species during the human neutrophil respiratory burst is thought to be mandatory for effective defense against bacterial infections and may play an important role in damage to host tissues. Part of the critical bacterial and host tissue damage has been attributed to hydroxyl radicals produced from superoxide and hydrogen peroxide. Because of the short life time of the very reactive hydroxyl radical, direct study of hydroxyl radical production is not possible; therefore, indirect detection methods such as electron spin resonance (ESR) coupled with appropriate spin-trapping agents such as 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) have been used. Superoxide production during the oxidative burst has been unambiguously demonstrated. Recent reports claim that hydroxyl radicals are not made during neutrophil stimulation and offer as an explanation the presence of granular components that interfere with hydroxyl radical production. When using the spin-trap agent DMPO, absence of the relatively long-lived adducts DMPO-OH and DMPO-CH3 has been assumed to be prima facie evidence for lack of hydroxyl radical participation. We show that high superoxide flux produced during stimulation of human neutrophils rapidly destroys both DMPO-OH and DMPO-CH3. In accord with previous implications, our results provide an alternative explanation for the absence of .OH adduct in spin-trapping studies and corroborate results obtained using other methods that implicate hydroxyl radical production during neutrophil stimulation.  相似文献   

12.
It is known that in respiratory burst oxidase preparations engaged in O2- production, cytochrome b558, a characteristic oxidase component, is partly reduced. This result has been interpreted in terms of a mechanism in which cytochrome b558 functions as an electron-carrying component of the respiratory burst oxidase, its level of reduction reflecting a steady-state partitioning of the cytochrome between reduced and oxidized forms as it ferries electrons from NADPH to oxygen. Kinetic arguments based on this interpretation have supported the proposal that the cytochrome is reduced at a rate sufficient to account for the rate of O2- production by activated neutrophils. We have confirmed the partial reduction of cytochrome b558 in neutrophil cytoplasts and in oxidase preparations exposed to NADPH, but have found that the reduction of the cytochrome bears no apparent relation to the activity of the oxidase, and can occur when NADPH is added to neutrophil membrane preparations that are unable to manufacture O2-. We therefore conclude that the NADPH-dependent reduction of cytochrome b558 seen in these preparations is unlikely to be a reflection of a catalysis-related steady state and that inferences drawn from such observations regarding the kinetic competence of the cytochrome may need to be reconsidered.  相似文献   

13.
To address the question whether leukocyte integrins are able to generate signals activating neutrophil functions, we investigated the capability of mAbs against the common beta chain (CD18), or the distinct alpha chains of CR3, LFA-1, or gp150/95, to activate neutrophil respiratory burst. These investigations were performed with mAbs bound to protein A immobilized to tissue culture polystyrene. Neutrophils plated in wells coated with the anti-CD18 mAbs IB4 and 60.3 released H2O2; H2O2 release did not occur when neutrophils were plated in wells coated with an irrelevant, isotype-matched mAb (OKDR), or with mAbs against other molecules (CD16, beta 2-microglobulin) expressed on the neutrophil surface at the same density of CD18. Four different mAbs, OKM1, OKM9, OKM10, 60.1, which recognize distinct epitopes of CR3 were unable to trigger H2O2 or O2- release from neutrophils. However, mAbs against LFA-1 or gp150/95 triggered both H2O2 and O2- release from neutrophils. Stimulation of neutrophils respiratory burst by both anti-CD18, and anti-LFA-1 or gp150/95 mAbs was totally inhibited by the microfilaments disrupting agent, cytochalasin B, and by a permeable cAMP analogue. While the capability to activate neutrophil respiratory burst was restricted to anti-LFA-1 and gp150/95 mAbs, we observed that mAbs against all members of leukocyte integrins, including CR3, were able to trigger neutrophil spreading. These findings indicate that, in neutrophils, all three leukocyte integrins can generate signals activating spreading, but only LFA-1 and gp150/95 can generate signals involved in activation of the respiratory burst. This observation can be relevant to understand the mechanisms responsible for the activation of neutrophil respiratory burst by tumor necrosis factor-alpha, which has been shown to be strictly dependent on expression of leukocyte integrins (Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gailit, and S. Wright. 1989. J. Cell Biol. 109:13411349.  相似文献   

14.
To assess the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in the activation of the human neutrophil respiratory burst, we have utilized an ether lipid of the type 1-O-alkyl-2-O-methylglycerol (AMG), recently shown to be an inhibitor of this kinase. AMG-C16 (with an hexadecyl chain at the sn-1 position) was found to inhibit the respiratory burst induced by sub-optimal concentrations of phorbol 12,13-dibutyrate. Respiratory burst activity was recovered by subsequent addition of a supraoptimal dose of phorbol 12-myristate 13-acetate, indicating that in the presence of the inhibitor only the activation of the NADPH:O2 oxidoreductase via protein kinase C is inhibited, but not the oxidoreductase itself. The respiratory burst induced by the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also inhibited in the presence of AMG-C16, the extent of inhibition being dependent on the concentration of fMLP. At the concentrations applied in these studies, AMG-C16 had no effect on cell viability, did not affect the formation of inositol phosphates induced by fMLP, and did not affect the characteristics of the Ca2+ fluxes induced by the same stimulus. In a cell-free assay system, AMG-C16 had no effect on the activity of cAMP-dependent or Ca2+/calmodulin-dependent protein kinase but inhibited protein kinase C in a dose-dependent fashion. To characterize the inhibitory action of AMG-C16 on the respiratory burst activity in more detail, we studied protein phosphorylation in relation to respiratory burst activity in neutrophil cytoplasts. We focused on the phosphorylation of the 47-kDa protein, because this protein is functionally associated with the NADPH:O2 oxidoreductase. At suboptimal concentrations of phorbol 12,13-dibutyrate, AMG-C16 inhibited phosphorylation of proteins, including that of the 47-kDa protein. Recovery of protein phosphorylation in parallel to recovery of respiratory burst activity was obtained by addition of increasing doses of phorbol 12,13-dibutyrate. Recovery of respiratory burst activity at intermediate concentrations of fMLP did not result in a proportional increase in 47-kDa protein phosphorylation; phosphorylation of the 47-kDa protein was recovered only at high concentrations of fMLP. From these data we conclude that protein kinase C is involved in the activation of the respiratory burst by phorbol esters and fMLP. However, with fMLP as a stimulus, a second signal seems to be triggered, which is insensitive to AMG-C16.  相似文献   

15.
We report here that human plasma alpha 1-antitrypsin (alpha 1-AT) inhibited human neutrophil O2.- release elicited by a variety of stimulants. In comparison, the inhibitory capacities of two serine protease inhibitors, L-1-tosylamide 2-phenylethyl chloromethyl ketone (TPCK) and soybean trypsin inhibitor (SBTI), and the human recombinant alpha 1-AT mutant, alpha 1-AT-Arg358 were in the order: alpha 1-AT = TPCK much greater than alpha 1-AT-Arg358 greater than SBTI when cells were stimulated with concanavalin A plus cytochalasin E. These data suggest that, in human inflammatory fluids containing relatively high concentrations of alpha 1-AT (such as rheumatoid arthritis synovial fluid), (i) alpha 1-AT may down-regulate the inflammatory process by inhibiting the neutrophil respiratory burst and (ii) serpin oxidation by neutrophil-released reactive oxygen species is unlikely to occur.  相似文献   

16.
It is known that low intensity magnetic fields increase superoxide anion production during the respiratory burst of rat peritoneal neutrophils in vitro. We investigated whether the high intensity magnetic fields (1.5 T) during magnetic resonance imaging can influence the human neutrophil function under in vivo conditions. Blood samples were obtained from 12 patients immediately before and after magnetic resonance imaging (mean time 27.6(+/-11.4 min)). The induced respiratory burst was investigated by the intracellular oxidative transformation of dihydrorhodamine 123 to the fluorescent dye rhodamine 123 via flow cytometry. The respiratory burst was induced either with phorbol 12-myristate 13-acetate, Escherichia coli, N-formyl-methionyl-leucylphenylalanine or priming with tumor necrosis factor followed by FMLP stimulation. There was no significant difference between the respiratory burst before and after magnetic resonance imaging, irrespective of the stimulating agent. Short time exposure to a high intensity magnetic field during magnetic resonance imaging seems not to influence the production of radical species in living neutrophils.  相似文献   

17.
There is mounting evidence that alpha(4) (CD49d) integrins are involved in neutrophil recruitment and function during inflammatory responses. We report that all resting murine neutrophils derived from bone marrow or peripheral blood express easily detectable levels of alpha(4) integrins on their surface. These alpha(4) integrins were functional, as demonstrated by stimulation of respiratory burst when neutrophils adhered to surfaces coated with the murine vascular cell adhesion molecule-1 (mVCAM-1). Adhesion occurred via alpha(4) integrins, as preincubation of neutrophils with an anti-alpha(4)-specific Ab inhibited attachment to mVCAM-1. Direct cross-linking of the alpha(4) integrin subunit by surface-bound mAbs also elicited superoxide release and release of the secondary granule marker, lactoferrin. The functional responses that occurred downstream of alpha(4) integrin cross-linking required signaling by Src family kinases. Neutrophils derived from hck(-/-)fgr(-/-)lyn(-/-) triple-knockout or hck(-/-)fgr(-/-) double-knockout mice failed to undergo respiratory burst when plated on mVCAM-1. Triple mutant neutrophils were also defective in release of both superoxide and lactoferrin when plated on surfaces coated with mAbs directed against alpha(4). Correlated with impaired alpha(4)-induced functional responses, triple-mutant neutrophils also failed to spread and tightly adhere to anti-alpha(4) mAb-coated surfaces. This is the first direct evidence that functional alpha(4) integrins are expressed by murine PMNs, and that these surface molecules can mediate cellular responses such as tight adhesion, spreading, sustained respiratory burst, and specific granule release in vitro. Moreover the alpha(4) integrins, like all other integrins tested, use the Src family kinases to transduce intracellular signals.  相似文献   

18.
Neutrophils express two types of receptor for the Fc region of IgG, FcRII and FcRIII. Per neutrophil, 10,000 to 20,000 molecules of FcRII (40 kDa) and 100,000 to 200,000 molecules of FcRIII (50 to 80 kDa) are expressed. Via these receptors, neutrophils bind IgG complexes that contain more than one IgG molecule. This binding activates functional processes, such as the respiratory burst and phagocytosis. We studied the contribution of FcRII and FcRIII in the activation of these processes, using well-defined complexes (both large and small) in combination with mAb against FcRII and FcRIII. Small (dimeric) IgG complexes appeared to bind via FcRIII. However, binding to FcRIII alone, when FcRII is blocked by an anti-FcRII mAb, did not induce a respiratory burst. Induction of the respiratory burst by a large immune complex, such as Staphylococcus aureus Wood opsonized with IgG antibodies, was mediated by binding to FcRII, because it was blocked by an anti-FcRII mAb but not by an anti-FcRIII mAb. This indicates that these IgG-opsonized bacteria can cross-link FcRII and activate the cells without the need to adhere to the FcRIII. The respiratory burst induced by IgG-latex was not inhibited by an anti-FcRII mAb, because the avidity for FcRII of IgG-latex, a particle of the same size as a Staphylococcus but with a two to three times higher IgG content, is increased by its simultaneous binding to FcRIII. This enhanced avidity results in removal of anti-FcRII mAb from the FcRII by IgG-latex. This increased avidity of large complexes for FcRII, created by concurrent binding to FcRIII, is not necessary for activation of human neutrophils, because neutrophils from patients with paroxysmal nocturnal hemoglobinuria, with about 10% of the normal FcRIII expression, showed a normal metabolic response upon addition of IgG-latex. Phagocytosis of IgG-opsonized 14C-labeled S. aureus Wood was inhibited equally well by anti-FcRII mAb and by anti-FcRII in combination with anti-FcRIII mAb. Thus, FcRII is not only essential for the IgG-induced activation of the NADPH oxidase system, but also for the IgG-induced phagocytosis.  相似文献   

19.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   

20.
Surfactant protein D (SP-D) and neutrophils participate in the early innate immune response to influenza A virus (IAV) infection. SP-D increases neutrophil uptake of IAV and modulates neutrophil respiratory burst responses to IAV; however, neutrophil proteases have been shown to degrade SP-D, and human neutrophil peptide defensins bind to SP-D and can cause precipitation of SP-D from bronchoalveolar lavage fluid (BALF). BALF has significant antiviral activity against IAV. We first added neutrophils to BALF during incubation with IAV. Addition of neutrophils to BALF caused significantly greater clearance of IAV from culture supernatants than from BALF alone, and this effect was significantly more pronounced when neutrophils were activated during incubation with the virus. In contrast, if activated neutrophils were incubated with BALF before addition of virus, they reduced antiviral activity of BALF. This effect correlated with depletion of SP-D from BALF. Activation of neutrophils with agonists that induce primary granule release (including release of human neutrophil peptide defensins) caused SP-D depletion, but activation with PMA, which causes only secondary granule release, did not. The ability of activated neutrophils to deplete SP-D from BALF was partially, but not fully, corrected with protease inhibitors but was unaffected by inhibition of neutrophil respiratory burst responses. These results suggest that chronic neutrophilic inflammation (e.g., as in chronic smoking or cystic fibrosis) may reduce SP-D levels and predispose to IAV infection. In contrast, acute inflammation, as occurs in the early phase of IAV infection, may promote neutrophil-mediated viral clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号