首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buliakova NV  Azarova VS 《Biofizika》2002,47(4):728-734
The cross allotransplantation of right gastrocnemius muscles was carried out between intact rats and rats in which adrenals and right shins were subjected to low-energy He-Ne laser radiation (10 procedures for 2 weeks, the exposure duration 5 min; total dose for each rat 15-18 J/cm2). By conditions of experiment, the rats in each series were both donors and recipients, and hence the heterogeneity of rats in each series was the same. It was shown that the laser radiation in the dose studied and the regimes of exposure of rat adrenals and shin (area of the planned allotransplantation) influenced the muscle alloplasty. In rats with irradiated adrenals and shin, the disintegration and resorption of muscle allografts occurred more actively. In intact rats, muscle allografts were more viable. The allogenic muscle tissue and a weak contractile reaction of allografts were revealed in most of them. The allografts showed a moderate lymphocytic infiltration. The data obtained indirectly evidence that the transplant immune reaction increased in rats with irradiated adrenals and shin. In intact rats, the transplant immune reaction to irradiated m.gastrocnemius from irradiated shin decreased.  相似文献   

2.
Muscle fiber conduction velocity (CV) is commonly estimated from surface electromyograms (EMGs) collected with electrodes parallel to muscle fibers. If electrodes and muscle fibers are not located in parallel planes, CV estimates are biased towards values far over the physiological range. In virtue of their pinnate architecture, the fibers of muscles such as the gastrocnemius are hardly aligned in planes parallel to surface electrodes. Therefore, in this study we investigate whether physiological CV estimates can be obtained from the gastrocnemius muscle. Specifically, with a large grid of 16 × 8 electrodes we map CV estimates over the whole gastrocnemius muscle while eleven subjects exerted isometric plantar flexions at three different force levels. CV was estimated for couples of single differential EMGs and estimate locations (i.e., channels) were classified as physiological and non-physiological, depending on whether CV estimates were within the physiological range (3–6 ms?1) or not. Physiological CV values could be estimated from a markedly small muscle region for eight participants; channels providing physiological CV estimates corresponded to about 5% of the total number of channels. As expected, physiological and non-physiological channels were clustered in distinct regions. CV estimates within the physiological range were obtained for the most distal gastrocnemius portion (ANOVA, P < 0.001), where occurrences of propagating potentials were often verified through visual analysis. For the first time, this study shows that CV might be reliably assessed from surface EMGs collected from the most distal gastrocnemius region.  相似文献   

3.
In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [14C]lactate intraperitoneal injection leads to preferential 14C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [14C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers.  相似文献   

4.
In this paper, we describe the effects of voluntary cage wheel exercise on mouse cardiac and skeletal muscle. Inbred male C57/Bl6 mice (age 6-8 wk; n = 12) [corrected] ran an average of 4.3 h/24 h, for an average distance of 6.8 km/24 h, and at an average speed of 26.4 m/min. A significant increase in the ratio of heart mass to body mass (mg/g) was evident after 2 wk of voluntary exercise, and cardiac atrial natriuretic factor and brain natriuretic peptide mRNA levels were significantly increased in the ventricles after 4 wk of voluntary exercise. A significant increase in the percentage of fibers expressing myosin heavy chain (MHC) IIa was observed in both the gastrocnemius and the tibialis anterior (TA) by 2 wk, and a significant decrease in the percentage of fibers expressing IIb MHC was evident in both muscles after 4 wk of voluntary exercise. The TA muscle showed a greater increase in the percentage of IIa MHC-expressing fibers than did the gastrocnemius muscle (40 and 20%, respectively, compared with 10% for nonexercised). Finally, the number of oxidative fibers as revealed by NADH-tetrazolium reductase histochemical staining was increased in the TA but not the gastrocnemius after 4 wk of voluntary exercise. All results are relative to age-matched mice housed without access to running wheels. Together these data demonstrate that voluntary exercise in mice results in cardiac and skeletal muscle adaptations consistent with endurance exercise.  相似文献   

5.
The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.  相似文献   

6.
A comparative histological investigation of posttraumatic regeneration in irradiated with 30 or 40 Gy and cross-sectioned musculus gastrocnemius of rats after autotransplantation into muscle defect of non-irradiated minced muscle tissue and laser therapy of hind limb in post-operative period was conducted. The obtained results showed that in irradiated with 30 Gy sectioned muscle (control series) the inflammatory reaction, resorption of fibrin in the area of trauma were inhibited and proliferation of muscle tissue from proximal and distal stump was suppressed. The rough connective tissue scar was formed. In experimental series for stimulation of regeneration the method of autografting minced muscle tissue into the defect of irradiated (30 or 40 Gy) cross-sectioned muscle and combination of this method with helium-neon laser rays exposition was used. The more marked recovery was obtained in irradiated with 30 Gy operated muscle after a 10-day treatment of limb with laser rays.  相似文献   

7.
A model of the human triceps surae muscle-tendon complex applied to jumping   总被引:1,自引:0,他引:1  
The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement.  相似文献   

8.
Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.  相似文献   

9.
Substrate utilization by English sparrow skeletal muscle has been extensively studied in our lab. However, there are few published studies on the muscle fiber composition of English sparrow wing and gastrocnemius muscles. The objective of the present study was to examine the fiber type composition of a variety of muscles in the English sparrow. The classification of a muscle fiber as fast glycolytic, slow oxidative, or fast oxidative glycolytic provides insight into the physiological function of muscles. Therefore, we completed mATPase and NADH stains on four muscles of the sparrow wing, as well as the gastrocnemius muscle, to characterize these muscle fiber types. Results show that the fibers of extensor digitorum communis, extensor metacarpi ulnaris, and extensor metacarpi radialis are homogeneous fast oxidative. The fibers of the supinator are homogeneous fast oxidative in 62.5% of samples, and heterogeneous (45.2% fast oxidative, 54.8% fast nonoxidative) in 37.5% of samples. Whereas the gastrocnemius muscle fibers are heterogeneous (10% fast oxidative, 64% fast nonoxidative, 26% slow oxidative) in all muscles examined.  相似文献   

10.
Mouse extensor digitorum longus (EDL) muscle was subjected to a dose of gamma irradiation that causes reproductive death of satellite cells and/or to chronic compensatory overload, achieved by removal of the distal portion of the tibialis anterior muscle. Four weeks later the mass, fiber type percentage, and fiber size of the EDL muscle were measured. Both the irradiated + overloaded and the irradiated only EDL muscles were significantly lighter and contained significantly smaller fibers than untreated muscle or muscle subjected to chronic overload only. Overload muscle, whether irradiated or not, had a larger percentage of type IIx fibers and a smaller percentage of type IIb fibers than muscle that had not been overloaded. The results confirm that satellite cell proliferation is a prerequisite for muscle hypertrophy induced by synergist incapacitation, but it appears not to be required for the maintenance of, or change in, normal muscle fiber myosin heavy chain phenotype expression.  相似文献   

11.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

12.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of mitochondrial profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria across the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old chicks. At hatching, the length of capillaries is similar in both muscles, but as chicks grow, the proportion of longer (more than 600 µm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.__________Translated from Ontogenez, Vol. 36, No. 2, 2005, pp. 135–144.Original Russian Text Copyright © 2005 by Belichenko, Korostyshevskaya, Maksimov, Shoshenko.  相似文献   

13.
The diameter, length, and numerical density of capillaries, diameter of muscle fibers, size and numerical density of their profiles, and relative volume of mitochondria in them were determined in the chicken red oxidative gastrocnemius and white glycolytic pectoral muscle during development from day 10 of embryogenesis to six month of postnatal life. The bulk blood flow was measured in these muscles by hydrogen clearance during postembryonic development. During embryogenesis, the fibers of gastrocnemius muscle develop and grow at a higher rate, while during postembryonic development, those of the pectoral muscle develop faster. The density of mitochondrial profiles increases during embryogenesis and decreases after hatching, while their mean size increases, especially in the oxidative fibers, but it somewhat decreases in 6-month old chicks. Redistribution of mitochondria by the fiber section during development takes place in both muscles: they are localized predominantly in the center in 18-day embryos and in the periphery, especially in the gastrocnemius fibers, in 6-month old fowl. At hatching, the lengths of capillaries are similar in both muscles, but as chicks grow, the proportion of longer (more than 600 microm) capillaries in the pectoral muscle sharply increases, while their density and bulk blood flow decrease. Ratios were determined between structural parameters of the capillary bed and mitochondria, on the one hand, and oxygen consumption (ml/min per 1 mm fiber and 100 g muscle mass), on the other.  相似文献   

14.
The sequential cytological events of the regeneration process, after partial excision of the gastrocnemius muscle in the rat, were followed by light and electron microscopy. During the first 2 days after injury leukocytes and macrophages infiltrate into the traumatized area. Myogenic regeneration is then characterized by mainly two repair mechanisms. Mononucleated cells, that populate the excised area, most probably fuse together to give rise to newly formed multinucleated myotubes that further develop to striated myofibers. Another mechanism involves the repair of injured muscle fibers by the possible fusion of mononucleated cells with their necrotic cut ends. Consequently, by addition of nuclei and new muscular material, sarcoplasmic outgrowths from the injured fibers are formed. It is concluded that mainly two repair mechanisms are involved in the regeneration process following partial excision of a muscle: addition of new muscle fibers in a process similar to that of embryonic myogenesis and also meristic growth from the injured fibers.  相似文献   

15.
The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.  相似文献   

16.
The intensity of cell respiration of the rat m. soleus, gastrocnemius c.m., and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the unloading. This may be associated with the transition to the glycolytic energy pathway due to a decrease in the EMG activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.  相似文献   

17.
Calcitonin gene-related peptide (CGRP) is present in some spinal cord motoneurons and at neuromuscular junctions in skeletal muscle. We previously reported increased numbers of CGRP-positive (CGRP+) motoneurons supplying hindlimb extensors after downhill exercise (Homonko DA and Theriault E, Inter J Sport Med 18: 1-7, 1997). The present study identifies the responding population with respect to muscle and motoneuron pool and correlates changes in CGRP with muscle fiber type-identified end plates. Twenty seven rats were divided into the following groups: control and 72 h and 2 wk postexercise. FluoroGold was injected into the soleus, lateral gastrocnemius, and the proximal (mixed fiber type) or distal (fast-twitch glycolytic) regions of the medial gastrocnemius (MG). Untrained animals ran downhill on a treadmill for 30 min. The number of FluoroGold/CGRP+ motoneurons within proximal and distal MG increased by 72 h postexercise (P<0.05). No significant changes were observed in soleus or lateral gastrocnemius motoneurons postexercise. The number of alpha-bungarotoxin/CGRP+ motor end plates in the MG increased exclusively at fast-twitch glycolytic muscle fibers 72 h and 2 wk postexercise (P<0.05). One interpretation of these results is that unaccustomed exercise preferentially activates fast-twitch glycolytic muscle fibers in the MG.  相似文献   

18.
The structure of musculus longissimus lumborum (m.l.l.) was evaluated with respect to proportion of three muscle fiber types and their diameters, in gilts and barrows of wild boar/domestic pig hybrids. The experiment was carried out on 29 hybrids (21 barrows and 8 gilts) which originated from crossing Duroc sows with wild boar (Sus scrofa ferus). The diameter of the "red" fibres in barrows was 48.42 microm, significantly greater than in gilts--43.71 microm. The diameters of the remaining two types of fibres in barrows and gilts were similar and amounted to: "intermediate" fibres--39.08 and 40.79 microm, "white" fibres--51.42 and 51.03, respectively. In respect to sex no statistical differences in proportion of any types of fibers were found, which in barrows came to: "red"--12.93%, "intermediate"--30.17% and "white"--57.32%, and in gilts to: 12.50, 27.04 and 60.45%, respectively. In conclusion, in m.l.l. of wild boar/domestic pig hybrids, smaller diameters of all muscle fibers types were identified as well as a higher proportion of intermediate fibers in comparison to m.l.l. of various pig breeds. An increased proportion of the intermediate fibers probably results from the interaction between factors such as age (8-months), physical activity (open-air for running) and the influence of wild boar genes.  相似文献   

19.
In explosive movements involving the lower extremity elastic recoil and transportation of power from knee to ankle via m. gastrocnemius allow power output about the ankle to reach values over and above the maximum power output of the plantar flexors. The object of this study was to estimate the relative power and work contributions of these two mechanisms for the push-off phase in one-legged jumping. During jumps of ten subjects ground reaction forces and cinematographic data were recorded. The data were used for a kinematic and kinetic analysis of the jumps yielding, among other variables, the velocity with which origins of m. soleus and m. gastrocnemius approach insertion (V OI), and net power output about the ankle (P A). V OI of m. soleus and m. gastrocnemius were imposed upon a model of the muscle-tendon complex of m. triceps surae, and power contributions of muscle fibers (P fibers), tendinous structures (P tendon), and transportation (P transported) were calculated. During the last 150 ms before toe-off, P A was found to increase rapidly and to attain an average peak value of 1790 W. The curve obtained by summation of P fibers, P tendon and P transported closely resembled that of P A. On the instant that the latter peaked (50 ms before toe-off) P fibers and P tendon of m. triceps surae contributed 27 and 53% respectively, and P transported contributed 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We present the first measurements of the magnetic field from a single muscle fiber of the frog gastrocnemius, obtained by using a toroidal pickup coil coupled to a room-temperature, low-noise amplifier. The axial currents associated with the magnetic fields of single fibers were biphasic and had peak-to-peak amplitudes ranging between 50 and 100 nA, depending primarily on the fiber radius. With an intracellular microelectrode, we measured the action potential of the same fiber, which allowed us to determine that the intracellular conductivity of the muscle fiber in the core conductor approximation was 0.20 +/- 0.09 S/m. Similarly, we found that the effective membrane capacitance was 0.030 +/- 0.011 F/m2. These results were not significantly affected by the anisotropic conductivity of the muscle bundle. We demonstrate how our magnetic technique can be used to determine the transmembrane action potential without penetrating the membrane with a microelectrode, thereby offering a reliable, stable, and atraumatic method for studying contracting muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号