首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
2.
Ravin NV 《Plasmid》2011,65(2):102-109
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.  相似文献   

3.
4.
N15 is a bacteriophage of Escherichia coli that resembles lambda, but, unlike lambda, it lysogenizes as a linear plasmid. We show that stable maintenance of this unusual plasmid-prophage depends on the parA and parB genes, relatives of the partition genes of F and P1 plasmids. ParB of N15, like its F- and P1-encoded homologues, destabilizes plasmids carrying its target centromere, when present in excess. Within the genome of N15, we identified four unlinked, palindromic sequences that can promote the ParB-mediated destabilization of a moderate-copy vector in cis. They are distant from the parAB operon, unlike the centromeric sites of F and P1. Each of these palindromes could interact in vivo and in vitro with ParB. Each, when cloned separately, had properties characteristic of centromeric sites: exerted incompatibility against the N15 prophage and mini-N15 plasmids, and stabilized a mini-P1 plasmid depleted of its own partition genes when ParA and ParB of N15 were supplied. A pair of sites was more effective than a single site. Two of the centromeric sites are located in the proximity of promoters of phage genes, suggesting that, in addition to their function in partitioning of N15 prophage, they may control expression of N15 lytic functions.  相似文献   

5.
6.
Ravin N  Lane D 《Journal of bacteriology》1999,181(22):6898-6906
A locus close to one end of the linear N15 prophage closely resembles the sop operon which governs partition of the F plasmid; the promoter region contains similar operator sites, and the two putative gene products have extensive amino acid identity with the SopA and -B proteins of F. Our aim was to ascertain whether the N15 sop homologue functions in partition, to identify the centromere site, and to examine possible interchangeability of function with the F Sop system. When expressed at a moderate level, N15 SopA and -B proteins partly stabilize mini-F which lacks its own sop operon but retains the sopC centromere. The stabilization does not depend on increased copy number. Likewise, an N15 mutant with most of its sop operon deleted is partly stabilized by F Sop proteins and fully stabilized by its own. Four inverted repeat sequences similar to those of sopC were located in N15. They are distant from the sop operon and from each other. Two of these were shown to stabilize a mini-F sop deletion mutant when N15 Sop proteins were provided. Provision of the SopA homologue to plasmids with a sopA deletion resulted in further destabilization of the plasmid. The N15 Sop proteins exert effective, but incomplete, repression at the F sop promoter. We conclude that the N15 sop locus determines stable inheritance of the prophage by using dispersed centromere sites. The SopB-centromere and SopA-operator interactions show partial functional overlap between N15 and F. SopA of each plasmid appears to interact with SopB of the other, but in a way that is detrimental to plasmid maintenance.  相似文献   

7.
Temperate bacteriophages with plasmid prophages are uncommon in nature, and of these only phages N15 and PY54 are known to have a linear plasmid prophage with closed hairpin telomeres. We report here the complete nucleotide sequence of the 51,601-bp Klebsiella oxytoca linear plasmid pKO2, and we demonstrate experimentally that it is also a prophage. We call this bacteriophage phiKO2. An analysis of the 64 predicted phiKO2 genes indicate that it is a fairly close relative of phage N15; they share a mosaic relationship that is typical of different members of double-stranded DNA tailed-phage groups. Although the head, tail shaft, and lysis genes are not recognizably homologous between these phages, other genes such as the plasmid partitioning, replicase, prophage repressor, and protelomerase genes (and their putative targets) are so similar that we predict that they must have nearly identical DNA binding specificities. The phiKO2 virion is unusual in that its phage lambda-like tails have an exceptionally long (3,433 amino acids) central tip tail fiber protein. The phiKO2 genome also carries putative homologues of bacterial dinI and umuD genes, both of which are involved in the host SOS response. We show that these divergently transcribed genes are regulated by LexA protein binding to a single target site that overlaps both promoters.  相似文献   

8.
A key event in development is the irreversible commitment to a particular cell fate, which may be concurrent with or delayed with respect to the initial cell fate decision. In this work, we use the paradigmatic bacteriophage λ lysis-lysogeny decision circuit to study the timing of commitment. The lysis-lysogeny decision is made based on the expression trajectory of CII. The chosen developmental strategy is manifested by repression of the pR and pL promoters by CI (lysogeny) or by antitermination of late gene expression by Q (lysis). We found that expression of Q in trans from a plasmid at the time of infection resulted in a uniform lytic decision. Furthermore, expression of Q up to 50 min after infection results in lysis of the majority of cells which initially chose lysogenic development. In contrast, expression of Q in cells containing a single chromosomal prophage had no effect on cell growth, indicating commitment to lysogeny. Notably, if the prophage was present in 10 plasmid-borne copies, Q expression resulted in lytic development, suggesting that the cellular phage chromosome number is the critical determinant of the timing of lysogenic commitment. Based on our results, we conclude that (i) the lysogenic decision made by the CI-Cro switch soon after infection can be overruled by ectopic Q expression at least for a time equivalent to one phage life cycle, (ii) the presence of multiple λ chromosomes is a prerequisite for a successful Q-mediated switch from lysogenic to lytic development, and (iii) phage chromosomes within the same cell can reach different decisions.  相似文献   

9.
N15 is the only bacteriophage of Escherichia coli known to lysogenize as a linear plasmid. Clear-plaque mutations lie in at least two regions of the 46-kb genome. We have cloned, sequenced, and characterized the primary immunity region, immB. This region contains a gene, cB, whose product shows homology to lambdoid phage repressors. The cB3 mutation confers thermoinducibility on N15 lysogens, consistent with CB being the primary repressor of N15. Downstream of cB lies the locus of N15 plasmid replication. Upstream of cB lies an operon predicted to encode two products: one homologous to the late repressor of P22 (Cro), the other homologous to the late antiterminator of phi 82 (Q). The Q-like protein is essential for phage development. We show that CB protein regulates the expression of genes that flank the cB gene by binding to DNA at symmetric 16-bp sites. Three sites are clustered upstream of cB and overlap a predicted promoter of the cro and Q-like genes as well as two predicted promoters of cB itself. Two sites downstream of cB overlap a predicted promoter of a plasmid replication gene, repA, consistent with the higher copy number of the mutant, N15cB3. The leader region of repA contains terminators in both orientations and a putative promoter. The organization of these regulatory elements suggests that N15 plasmid replication is controlled not only by CB but also by an antisense RNA and by a balance between termination and antitermination.  相似文献   

10.
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid‐like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS‐L, one of two centromere‐like sites flanking the parAB genes. The RedRock parS‐L and parS‐R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.  相似文献   

11.
12.
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonas aeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.  相似文献   

13.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on specific substrates, and show that it is necessary for replication of the linear prophage. We show that protelomerase is an end-resolving enzyme responsible for processing of replicative intermediates. Removal of protelomerase activity resulted in accumulation of replicative intermediates that were found to be circular head-to-head dimers. N15 protelomerase and its target site constitute a functional unit acting on other replicons independently of other phage genes; a mini-F or mini-P1 plasmid carrying this unit replicates as a linear plasmid with covalently closed ends. Our results suggest the following model of N15 prophage DNA replication. Replication is initiated at an internal ori site located close to the left end of plasmid DNA and proceeds bidirectionally. After replication of the left telomere, protelomerase cuts this sequence and forms two hairpin loops telL. After duplication of the right telomere (telR) the same enzyme resolves this sequence producing two linear plasmids. Alternatively, full replication of the linear prophage to form a circular head-to-head dimer may precede protelomerase-mediated formation of hairpin ends.  相似文献   

14.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

15.
Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.  相似文献   

16.
17.
The plasmid prophage N15: a linear DNA with covalently closed ends   总被引:1,自引:0,他引:1  
Coliphage N15 is a temperate bacteriophage whose prophage is a linear plasmid molecule with covalently closed ends (telomeres). The N15 prophage provided the first example of such DNA in prokaryotes and, up to now, it is the only known example of a linear plasmid in Escherichia coli. The linear N15 mature phage DNA has single-stranded cohesive ends. The phage and plasmid prophage DNAs are circularly permuted. The nucleotide structure of the telomere-forming site tel RL in phage DNA corresponds to the structures of the terminal hairpin loops. It suggests a unique mechanism for conversion of the circular phage DNA to the linear plasmid form, which is performed by the prokaryotic telomerase (protelomerase). The results of a comparison of the protelomerase with integrases lead us to suggest that these proteins may have evolved from a common ancestor. The mechanism of plasmid N15 replication is unknown. We propose that the protelomerase participates in linear plasmid replication, acting as a resolvase of replicative intermediates that are tail-to-tail linear dimers. The sequence analysis of the N15 DNA showed that it represents an evolutionary 'link' between plasmids F, P1, P4 and lambdoid bacteriophages.  相似文献   

18.
19.
Low-copy number plasmids of bacteria rely on specific centromeres for regular partition into daughter cells. When also present on a second plasmid, the centromere can render the two plasmids incompatible, disrupting partition and causing plasmid loss. We have investigated the basis of incompatibility exerted by the F plasmid centromere, sopC, to probe the mechanism of partition. Measurements of the effects of sopC at various gene dosages on destabilization of mini-F, on repression of the sopAB operon and on occupancy of mini-F DNA by the centromere-binding protein, SopB, revealed that among mechanisms previously proposed, no single one fully explained incompatibility. sopC on multicopy plasmids depleted SopB by titration and by contributing to repression. The resulting SopB deficit is proposed to delay partition complex formation and facilitate pairing between mini-F and the centromere vector, thereby increasing randomization of segregation. Unexpectedly, sopC on mini-P1 exerted strong incompatibility if the P1 parABS locus was absent. A mutation preventing the P1 replication initiation protein from pairing (handcuffing) reduced this strong incompatibility to the level expected for random segregation. The results indicate the importance of kinetic considerations and suggest that mini-F handcuffing promotes pairing of SopB-sopC complexes that can subsequently segregate as intact aggregates.  相似文献   

20.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号