首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The betabellin structure is a de novo designed beta-sandwich protein consisting of two 32-residue beta sheets packed against one another by hydrophobic interactions. Betabellin 16S (B16S), a 32-residue peptide chain (HSLTAKIakLTFSIAahTYTCAVakYTAKVSH, where a is DAla, h is DHis, and k is DLys), did not have beta structure in water at pH 6.5. Air oxidation of B16S furnished betabellin 16D (B16D), a 64-residue disulfide-bridged two-chain protein, which also did not fold in water at pH 6.5. However, the extent of beta structure observed for B16D increased with pH and ionic strength of the solution and the B16D concentration as observed by circular dichroism spectropolarimetry. Transmission electron microscopy showed that B16D formed narrow fibrils that associated into broad ribbons in 5.0 mM Mops and 0.25 M NaCl at pH 6.9.  相似文献   

2.
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array.  相似文献   

3.
The betabellin target structure consists of 2 32-residue beta sheets packed against each other by hydrophobic interactions. We have designed, chemically synthesized, and biophysically characterized betabellin 14S, a single chain, and betabellin 14D, the disulfide-bridged double chain. The 32-residue nongenetic betabellin-14 chain (HSLTASIkaLTIHVQakTATCQVkaYTVHISE, a = D-Ala, k = D-Lys) has a palindromic pattern of polar (p), nonpolar (n), end (e), and beta-turn (t,r) residues (epnpnpnttnpnpnprrpnpnpnttnpnpnpe). Each half contains the same 14-residue palindromic pattern (underlined). Pairs of D-amino acid residues are used to favor formation of inverse-common (type-I') beta turns. In water at pH 6.5, the single chain of betabellin 14S is not folded, but the disulfide-linked betabellin 14D is folded into a stable beta-sheet structure. Thus, folding of the covalent dimer beta-bellin 14D is induced by formation of the single interchain disulfide bond. The binary pattern of alternating polar and nonpolar residues of its beta-sheets is not sufficient to induce folding. Betabellin 14D is a very water-soluble (10 mg/mL), small (64 residues), nongenetic (12 D residues) beta-sheet protein with properties (well-dispersed proton NMR resonances; Tm = 58 degrees C and delta Hm = 106 kcal/mol at pH 5.5) like those of a native protein structure.  相似文献   

4.
The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue -sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited -sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7 ± 2 nm) was consistent with the width (6.8 nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D -sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

5.
Summary The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, wherep=DPro,k=DLys, andh=DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7±2 nm) was consistent with the width (6.8nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

6.
The betabellin target structure is a beta-sandwich protein consisting of two 32 residue beta-sheets packed against one another by interaction of their hydrophobic faces. The 32 residue chain of betabellin-15S (HSLTAKIpkLTFSIAphTYTCAV pkYTAKVSH, where p=DPro, k=DLys, and h=DHis) did not fold in water at pH 6.5. Air oxidation of betabellin-15S provided betabellin-15D, the 64 residue disulfide bridged two-chain molecule, which also remained unfolded in water at pH 6.5. By circular dichroic spectropolarimetry, the extent of beta structure observed for betabellin-15D increased with the pH and ionic strength of the solution and the betabellin-15D concentration. By electron microscopy, in 5.0 mM MOPS and 0.25 M NaCl at pH 6.9, betabellin-15D formed long narrow multimeric fibrils. A molecular model was constructed to show that the dimensions of these betabellin-15D fibrils are consistent with a single row of beta-sandwich molecules joined by multiple intersheet H-bonds.  相似文献   

7.
Amyloid fibrils underlying various serious amyloidoses including Alzheimer and prion diseases form characteristic deposits in which linear fibrils with an unbranched and rigid morphology associate laterally or radially, e.g. radial senile amyloid plaques of amyloid beta. To clarify the formation of these high order amyloid deposits, studying the rheology is important. A 22-residue K3 peptide fragment of beta2-microglobulin, a protein responsible for dialysis-related amyloidosis, forms long and homogeneous protofilament-like fibrils in 20% (v/v) 2,2,2-trifluoroethanol and 10 mM HCl (pH approximately 2). Here, using circular dichroism and linear dichroism, we observed the flow-induced alignment of fibrils. Analysis of far- and near-UV linear dichroism spectra suggested that both the net pi-pi* transition moment of the backbone carbonyl group and L(b) transition moment of the Tyr(26) side chain are oriented in parallel to the fibril axis, revealing the structural details of amyloid protofilaments. Moreover, the intensities of flow-induced circular dichroism or linear dichroism signals depended critically on the length and type of fibrils, suggesting that they are useful for detecting and characterizing amyloid fibrils.  相似文献   

8.
Beta2microglobulin (beta2m) is the major protein component of the fibrillar amyloid deposits isolated from patients diagnosed with dialysis-related amyloidosis (DRA). While investigating the molecular mechanism of amyloid fibril formation by beta2m, we found that the beta2m C-terminal peptide of 28 residues (cbeta2m) itself forms amyloid fibrils. When viewed by electron microscopy, cbeta2m aggregates appear as elongated unbranched fibers, the morphology typical for amyloids. Cbeta2m fibers stain with Congo red and show apple-green birefringence in polarized light, characteristic of amyloids. The observation that the beta2m C-terminal fragment readily forms amyloid fibrils implies that beta2m amyloid fibril formation proceeds via interactions of amyloid forming segments, which become exposed when the beta2m subunit is partially unfolded.  相似文献   

9.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

10.
Protein deposition as amyloid fibrils underlies more than twenty severely debilitating human disorders. Interestingly, recent studies suggest that all peptides and proteins possess an intrinsic ability to assemble into amyloid fibrils similar to those observed in disease states. The common properties and characteristics of amyloid aggregates thus offer the prospect that simple model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils and understand the origin and progression of fatal disorders associated with amyloid formation. Here, we report the de novo design of a 17-residue peptide model system, referred to as cc, which forms a protein-like coiled-coil structure under ambient solution conditions but can be easily converted into amyloid fibrils by raising the temperature. Oxidation of methionine residues at selected hydrophobic positions completely abolished amyloid fibril formation of the peptide while not interfering with its coiled-coil structure. This finding indicates that a small number of site-specific hydrophobic interactions can play a major role in the packing of polypeptide chain segments within amyloid fibrils. The simplicity and characteristics of the cc system make it highly suitable for probing molecular details of the assembly of amyloid structures. Abbreviations used for amino acids follow the recommendations of the IUPAC-IUB Commission of Biochemical Nomenclature [Eur. J. Biochem., 138 (1984) 9].  相似文献   

11.
The aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils occurs in the condition known as dialysis-related amyloidosis (DRA). The protein has a beta-sandwich fold typical of the immunoglobulin family, which is stabilized by a highly conserved disulphide bond linking Cys25 and Cys80. Oxidized beta(2)m forms amyloid fibrils rapidly in vitro at acidic pH and high ionic strength. Here we investigate the role of the single disulphide bond of beta(2)m in amyloidosis in vitro. We show that reduction of the disulphide bond destabilizes the native protein such that non-native molecules are populated at neutral pH. These species are prone to oligomerization but do not form amyloid fibrils when incubated for up to 8 mo at pH 7.0 in 0.4 M NaCl. Over the pH range 4.0-1.5 in the presence of 0.4 M NaCl, however, amyloid fibrils of reduced beta(2)m are formed. These fibrils are approximately 10 nm wide, but are shorter and assemble more rapidly than those produced from the oxidized protein. These data show that population of non-native conformers of beta(2)m at neutral pH by reduction of its single disulphide bond is not sufficient for amyloid formation. Instead, association of one or more specific partially unfolded molecules formed at acid pH are necessary for the formation of beta(2)m amyloid in vitro. Further experiments will now be needed to determine the role of different oligomeric species of beta(2)m in the toxicity of the protein in vivo.  相似文献   

12.
The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH(2), called A beta(16-22) and representing residues 16-22 of the full-length beta-amyloid peptide associated with Alzheimer's disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibrils. The peptide conformation and supramolecular organization in A beta(16-22) fibrils are investigated by solid state (13)C NMR measurements. Two-dimensional magic-angle spinning (2D MAS) exchange and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) measurements indicate a beta-strand conformation of the peptide backbone at the central phenylalanine. One-dimensional and two-dimensional spectra of selectively and uniformly labeled samples exhibit (13)C NMR line widths of <2 ppm, demonstrating that the peptide, including amino acid side chains, has a well-ordered conformation in the fibrils. Two-dimensional (13)C-(13)C chemical shift correlation spectroscopy permits a nearly complete assignment of backbone and side chain (13)C NMR signals and indicates that the beta-strand conformation extends across the entire hydrophobic segment from Leu17 through Ala21. (13)C multiple-quantum (MQ) NMR and (13)C/(15)N rotational echo double-resonance (REDOR) measurements indicate an antiparallel organization of beta-sheets in the A beta(16-22) fibrils. These results suggest that the degree of structural order at the molecular level in amyloid fibrils can approach that in peptide or protein crystals, suggest how the supramolecular organization of beta-sheets in amyloid fibrils can be dependent on the peptide sequence, and illustrate the utility of solid state NMR measurements as probes of the molecular structure of amyloid fibrils. A beta(16-22) is among the shortest fibril-forming fragments of full-length beta-amyloid reported to date, and hence serves as a useful model system for physical studies of amyloid fibril formation.  相似文献   

13.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

14.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

15.
We report constraints on the supramolecular structure of amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (A beta(1-40)) obtained from solid-state nuclear magnetic resonance (NMR) measurements of intermolecular dipole-dipole couplings between (13)C labels at 11 carbon sites in residues 2 through 39. The measurements are carried out under magic-angle spinning conditions, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) technique. We also present one-dimensional (13)C magic-angle spinning NMR spectra of the labeled A beta(1-40) samples. The fpRFDR-CT data reveal nearest-neighbor intermolecular distances of 4.8 +/- 0.5 A for carbon sites from residues 12 through 39, indicating a parallel alignment of neighboring peptide chains in the predominantly beta-sheet structure of the amyloid fibrils. The one-dimensional NMR spectra indicate structural order at these sites. The fpRFDR-CT data and NMR spectra also indicate structural disorder in the N-terminal segment of A beta(1-40), including the first nine residues. These results place strong constraints on any molecular-level structural model for full-length beta-amyloid fibrils.  相似文献   

16.
Human stefin B (cystatin B) is an intracellular cysteine proteinase inhibitor broadly distributed in different tissues. Here, we show that recombinant human stefin B readily forms amyloid fibrils in vitro. It dimerises and further oligomerises, starting from the native-like acid intermediate, I(N), populated at pH 5. On standing at room temperature it produces regular (over 4 microm long) fibrils over a period of several months. These have been visualised by transmission electron microscopy and atomic force microscopy. Their cross-sectional diameter is about 14 nm and blocks of 27 nm repeat longitudinally. The fibrils are smooth, of unbranched surface, consistent with findings of other amyloid fibrils. Thioflavin T fluorescence spectra as a function of time were recorded and Congo red dye binding to the fibrils was demonstrated. Adding 10% (v/v) trifluoroethanol resulted in an increased rate of fibrillation with a typical lag phase. The finding that human stefin B, in contrast to the homologue stefin A, forms amyloid fibrils rather easily should promote further studies of the protein's behaviour in vivo, and/or as a model system for fibrillogenesis.  相似文献   

17.
We reported previously that stabilized beta-amyloid peptide dimers were derived from mutant amyloid precursor protein with a single cysteine in the ectodomain juxtamembrane position. In vivo studies revealed that two forms of SDS-stable A beta homodimers exist, species ending at A beta 40 and A beta 42. The phenomenon of the transformation of the initially deposited 42-residue beta-amyloid peptide into the amyloid fibrils of Alzheimer's disease plaques remains to be explained in physical terms, i.e. energetically and structurally. We therefore performed spectroscopic analyses revealing that engineered dimeric peptides ending at residue 42 displayed a much more pronounced beta-structural transition than corresponding monomers. Specifically, the single chemically induced dimerization of A beta peptides significantly increased the beta-sheet content by a factor of 2. The C-terminal residues Ile-41 and Ala-42 of dimeric forms further increased the beta-sheet content by roughly one-third. In contrast to A beta 42, the beta-sheet content of the alpha- and gamma-secretase-generated p3 fragments did not necessarily correlate with the tendency to form fibrils, although p3/17-42 had a pronounced thread forming character with fibril lengths of up to 2.5 microM. Electron microscopic images show that forms of p3/17-42 generated smaller granular particles than forms ending at residue 40. We discuss these findings in terms of A beta 1-42 dimers representing paranuclei, which self-aggregate into ribbon-like ordered fibrils by elongation. Based on A beta 42 dimer-specific titers of a polyclonal antiserum we propose that the A beta homodimer represents a nidus for plaque formation and a well defined novel therapeutic target.  相似文献   

18.
Despite numerous efforts, the lack of detailed structural information on amyloid fibrils has hindered clarification of the mechanism of their formation. Here, we describe a novel procedure for characterizing the conformational flexibility of beta(2)-microglobulin amyloid fibrils at single-residue resolution that uses H/D exchange of amide protons combined with NMR analysis. The results indicate that most residues in the middle region of the molecule, including the loop regions in the native structure, form a rigid beta-sheet core, whereas the the N- and C-termini are excluded from this core. The extensively hydrogen-bonded beta-sheet core explains the remarkable rigidity and stability of amyloid fibrils. The present method could be used to obtain residue-specific conformational information of various amyloid fibrils, even though it does not provide a high resolution three-dimensional structure.  相似文献   

19.
It has been suggested that, while the globular native forms of proteins are a side-chain-dominated compact structure evolved by pursuing a unique fold with optimal packing of amino acid residues, amyloid fibrils are a main-chain-dominated structure with an extensive hydrogen bond network. To address this issue, the effects of hydrostatic pressure on amyloid fibrils of beta2-microglobulin (beta2-m), involved in dialysis-related amyloidosis, were studied. A systematic analysis at various pressures and concentrations of guanidine hydrochloride conducted by monitoring thioflavin T fluorescence, light-scattering, and tryptophan fluorescence revealed contrasting conformational changes occurring consecutively: first, a pressure-induced reorganization of fibrils and then a pressure-induced unfolding. The changes in volume as well as the observed structural changes indicate that the beta2-m amyloid fibrils under ambient pressure are less tightly packed with a larger number of cavities, consistent with the main-chain-dominated amyloid structure. Moreover, the amyloid structure without optimal packing will enable various isoforms to form, suggesting the structural basis of multiple forms of amyloid fibrils in contrast to the unique native-fold.  相似文献   

20.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号