首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-galactose 4′-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.  相似文献   

2.
Timson DJ 《The FEBS journal》2005,272(23):6170-6177
UDP-galactose 4-epimerase (GALE, EC 5.1.3.2) catalyses the interconversion of UDP-glucose and UDP-galactose. Point mutations in this enzyme are associated with the genetic disease, type III galactosemia, which exists in two forms - a milder, or peripheral, form and a more severe, or generalized, form. Recombinant wild-type GALE, and nine disease-causing mutations, have all been expressed in, and purified from, Escherichia coli in soluble, active forms. Two of the mutations (N34S and G319E) display essentially wild-type kinetics. The remainder (G90E, V94M, D103G, L183P, K257R, L313M and R335H) are all impaired in turnover number (k cat) and specificity constant (k cat/Km), with G90E and V94M (which is associated with the generalized form of galactosemia) being the most affected. None of the mutations results in a greater than threefold change in the Michaelis constant (Km). Protein-protein crosslinking suggests that none of the mutants are impaired in homodimer formation. The L183P mutation suffers from severe proteolytic degradation during expression and purification. N34S, G90E and D103G all show increased susceptibility to digestion in limited proteolysis experiments. Therefore, it is suggested that reduced catalytic efficiency and increased proteolytic susceptibility of GALE are causative factors in type III galactosemia. Furthermore, there is an approximate correlation between the severity of these defects in the protein structure and function, and the symptoms observed in patients.  相似文献   

3.
Classical galactosemia is a genetic disorder caused by mutations in the galactose-1-phosphate uridyltransferase (GALT) gene. The Q188R and N314D mutations are the most frequently cited GALT gene mutations. N314D is further associated with two variants, Duarte 1 and Duarte 2. Nevertheless, no reports are available on the clinical and molecular spectrum of galactosemia from the Indian population. The present study was designed to establish the frequency of these two most common mutations and their variants in Indian galactosemia patients so as to determine a single most common mutation/polymorphism for establishing the DNA-based diagnosis of galactosemia. Three alleles were found to be present at a frequency of 0.036 (Q188R), 0.40 (N314D), and 0.39 (D2); no D1 alleles were found. A significantly higher frequency of the Duarte 2 allele in our population suggests the presence of a milder form of galactosemia, which can be well managed by early diagnosis and dietary management.  相似文献   

4.
Type I galactosemia is an inborn error resulting from mutations on both alleles of the GALT gene, which leads to the absence or deficiency of galactose-1-phosphate uridyltranseferase (GALT), the second of three enzymes catalyzing the conversion of galactose into glucose. On the basis of residual GALT activity, Type I galactosemia is classified into severe “Classical” and mild “Duarte” phenotypes. Classical galactosemia is frequently associated with S135L, Q188R and K285N mutations in the GALT gene. The functionally neutral N314D variation in the GALT gene is associated with Duarte galactosemia and is widespread among various worldwide populations. The present study aimed at detecting S135L, Q188R and K285N mutations and the N314D variant in the GALT gene by PCR using amplification refractory mutation system (ARMS). ARMS assays were established using standard DNA samples and were used for 8 galactosemia patients and 190 unrelated normal subjects all of Pakistani origin. S135L and K285N mutations were present neither in galactosemia patients nor in normal subjects. Only one galactosemia patient carried Q188R mutation that was in homozygous state. However, the N314D variant was frequently found both in affected (7 out of 16 alleles) and normal subjects (55 out of 380 alleles). This finding indicates that Duarte allele D314 might be far more common in Pakistani population than in European and North American ones.  相似文献   

5.
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin – an inhibitor of the de novo sphingolipid synthesis pathway – inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.  相似文献   

6.
We report the molecular characterization of two novel galactosemia mutations that exhibit different molecular phenotypes. Both are of the missense type with low or no residual enzyme activity. The R148W mutation results in an unstable protein, although messenger RNA is still produced. In contrast, the L195P mutation produces stable but inactive immunoreactive protein. The R148W mutation alters an amino acid that is not evolutionarily conserved, while the L195P mutation affects a well-conserved residue nine amino acids down-stream from the putative active site nucleophile. These mutations provide evidence that different mechanisms can result in galactosemia: destabilizing mutations in any given area of the protein and missense mutations in conserved domains of the enzyme resulting in low or no activity. These two mutant alleles represent the fifth and sixth galactosemia mutations and confirm the hypothesis that galactosemia results from a multiplicity of mutations at the molecular level.  相似文献   

7.
J K Reichardt  H L Levy  S L Woo 《Biochemistry》1992,31(24):5430-5433
We report here the molecular characterization of two galactosemia mutations, L74P and F171S, and one polymorphism, S135L, in human galactose-1-phosphate uridyltransferase (GALT). Both galactosemia mutations result in reduced enzymatic activity when reconstructed in the cDNA and overexpressed. The polymorphism, in contrast, has near normal activity. Both mutations affect evolutionarily conserved residues, suggesting that they are functionally important, while the polymorphism occurs in a nonconserved domain which is presumably not critical for enzymatic function. The F171S mutation is close to the putative active-site nucleophile. Our data further support the notion of molecular heterogeneity of galactosemia and suggest that galactosemia mutations and GALT polymorphisms may be useful tools in highlighting different functional domains in human GALT.  相似文献   

8.
We have identified a novel SacI restriction fragment length polymorphism (RFLP) in the human galactose-1-phosphate uridyl transferase (GALT) gene. This RFLP can be readily typed by the polymerase chain reaction (PCR). The polymorphic allele is found on about 11% of normal chromosomes and is in linkage disequilibrium with the two most common mutations identified in GALT thus far: Q188R and N314D. Q188R is found exclusively on chromosomes with the SacI restriction site, whereas N314D is found only on chromosomes lacking this site. This suggests that these two mutations arose independently in evolution on different chromosomal backgrounds. Galactosemia patients without the Q188R mutation have a frequency of the SacI polymorphism similar to normal controls suggesting that several different galactosemia mutations must be present in them. The SacI RFLP may also be useful in the prenatal diagnosis of galactosemia.  相似文献   

9.
Summary Congenital erythropoietic porphyria (CEP) or Günther's disease is an inborn error of heme biosynthesis transmitted as an autosomal recessive trait and characterized by a profound deficiency of uroporphyrinogen III synthase (UROIIIS) activity. We have previously described two missense mutations in the UROIIIS gene, confirming that the primary defect responsible for CEP is a structural alteration of this gene. We have extended our work to 5 additional unrelated families. Two new point mutations, a deletion and an insertion have been found in the messenger RNA. Our study shows that a molecular heterogeneity of the mutations exists in Günther's disease. One mutation (C73R), however, appears to be more frequent than the others. Finally, the different normal and mutated proteins have been expressed in Escherichia coli to determine the consequence of the mutations on the enzyme activity.  相似文献   

10.
Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities. Three subtypes have been described: TRPS I, caused by mutations in the TRPS1 gene on chromosome 8; TRPS II, a microdeletion syndrome affecting the TRPS1 and EXT1 genes; and TRPS III, a form with severe brachydactyly, due to short metacarpals, and severe short stature, but without exostoses. To investigate whether TRPS III is caused by TRPS1 mutations and to establish a genotype-phenotype correlation in TRPS, we performed extensive mutation analysis and evaluated the height and degree of brachydactyly in patients with TRPS I or TRPS III. We found 35 different mutations in 44 of 51 unrelated patients. The detection rate (86%) indicates that TRPS1 is the major locus for TRPS I and TRPS III. We did not find any mutation in the parents of sporadic patients or in apparently healthy relatives of familial patients, indicating complete penetrance of TRPS1 mutations. Evaluation of skeletal abnormalities of patients with TRPS1 mutations revealed a wide clinical spectrum. The phenotype was variable in unrelated, age- and sex-matched patients with identical mutations, as well as in families. Four of the five missense mutations alter the GATA DNA-binding zinc finger, and six of the seven unrelated patients with these mutations may be classified as having TRPS III. Our data indicate that TRPS III is at the severe end of the TRPS spectrum and that it is most often caused by a specific class of mutations in the TRPS1 gene.  相似文献   

11.
12.
Untreated classic galactosemia (galactose-1-phosphate uridyltransferase [GALT] deficiency) is known as a secondary congenital disorders of glycosylation (CDG) characterized by galactose deficiency of glycoproteins and glycolipids (processing defect or CDG-II). The mechanism of this undergalactosylation has not been established. Here we show that in untreated galactosemia, there is also a partial deficiency of whole glycans of serum transferrin associated with increased fucosylation and branching as seen in genetic glycosylation assembly defects (CDG-I). Thus galactosemia seems to be a secondary "dual" CDG causing a processing as well as an assembly N-glycosylation defect. We also demonstrated that in galactosemia patients, transferrin N-glycan biosynthesis is restored upon dietary treatment.  相似文献   

13.
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundaries have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for ~44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding region, we have detected normal sequences in cystinuria type II and type III chromosomes. The presence of rBAT mutated alleles only in type I chromosomes of homozygous (type I/I) and heterozygous (type I/III) patients provides evidence for genetic heterogeneity where rBAT would be responsible only for type I cystinuria and suggests a complementation mechanism to explain the intermediate type I/type III phenotype.  相似文献   

14.
von Willebrand disease (vWD) is the most common inherited bleeding disorder in humans. The disease is caused by qualitative and quantitative abnormalities of the von Willebrand factor (vWF). Genomic DNA from 25 patients with vWD type III, the most severe form of the disease, was studied using PCR followed by restriction-enzyme analysis and direct sequencing of the products. Nonsense mutations (CGA----TGA) were detected in exons 28, 32, and 45 by screening of all the 11 CGA arginine codons of the vWF gene. Two patients were found to be homozygous and five heterozygous for the mutation. Both parents and some of the relatives of the homozygous patients carry the mutation. These are the first reported examples of homozygous point mutations associated with the severe form of vWD. In the three heterozygous probands, one of the parents carried the mutation and had vWD type I. Family studies including parents and family members with or without vWD type I indicated that these three heterozygous patients are likely to be compound heterozygous. Twenty-one individuals from these seven families with vWD type I were found to be heterozygous for the mutation.  相似文献   

15.
Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder that is characterized by dysmyelination of the central nervous system resulting from mutations in the proteolipid protein (PLP) gene. Mutations causing either overexpression or expression of a truncated form of PLP result in oligodendrocyte cell death because of accumulation of PLP in the endoplasmic reticulum. It has therefore been hypothesized that absence of the protein should result in a less severe phenotype. However, until now, only one patient has been described with a complete deletion of the PLP gene. We report a Dutch family with a relatively mild form of PMD, in which the disease cosegregates with a (G-to-A) mutation in the initiation codon of the PLP gene. This mutation should cause the total absence of PLP and is therefore in agreement with the hypothesis that absence of PLP leads to a mild form of PMD.  相似文献   

16.
Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. We studied two families that both presented a phenotype different than that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described.  相似文献   

17.
Cystinuria is an autosomal recessive disorder characterized by increased urinary excretion of cystine and dibasic amino acids, which cause recurrent stone formation in affected individuals. Three subtypes of cystinuria have been described (type I, II, and III): type I is caused by mutations in the SLC3A1 gene, whereas nontype I (II and III) has been associated with SLC7A9 mutations. Of the 53 patients reported in our previous work, patients that showed SLC7A9 mutations in single-strand conformation polymorphism (SSCP) screening and/or either lacked or showed heterozygosity for SLC3A1 mutations were included in the present study. The entire coding region and the exon/intron boundaries of the SLC7A9 gene were analyzed by means of both SSCP and DNA sequencing in 16 patients, all but one of which were clinically diagnosed as homozygous cystinurics. Three novel SLC7A9 mutations were identified in the patient group: two missense mutations (P261L and V330M), and one single base-pair deletion (1009 delA). We also detected the previously reported A182T and nine novel polymorphisms in the patients. Mutations V330M and 1009delA occurred on different alleles in one individual, and we suggest that these mutations cause cystinuria in this patient. One patient that was homozygously mutated in the SLC3A1 gene carried the third novel mutation (P261L). We conclude that SLC3A1 is still the major disease gene among Swedish cystinuria patients, with only a minor contribution of SLC7A9 mutations as the genetic basis of cystinuria. The absence of SLC3A1 and SLC7A9 mutations in a substantial proportion of the patients implies that mutations in parts of the genes that were not analyzed may be present, as well as large deletions that escape detection by the methods used. However, our results raise the question of whether other, as yet unknown genes, may also be involved in cystinuria.  相似文献   

18.
Molecular analysis of 11 galactosemia patients.   总被引:2,自引:0,他引:2       下载免费PDF全文
Galactosemia is a human inborn error of galactose metabolism due to deficiency of galactose-1-phosphate uridyl transferase. In this paper, I describe the molecular analysis of genomic DNA, mRNA and protein from 11 different galactosemic patients by Southern, Northern and Western blotting. The results of these experiments lead me to conclude that galactosemia is caused mostly by missense mutations. The unusual preponderance of missense mutations in galactosemia led me to investigate its cause. I demonstrate that all 9 patients I investigated have detectable residual enzyme activity (ranging from 0.7-6.9% of normal). This finding is of potential importance in addressing the long-term complications of galactosemia.  相似文献   

19.
Classic galactosemia, an inborn error of human galactose metabolism, is characterized by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT). The current model for the pathophysiology of this disease ascribes most of its symptoms to the toxicity of intracellular galactose-1-phosphate (Gal-1-P), one of the substrates of GALT which accumulates in the untreated disease state. Recently, a reduction in the intracellular concentration of UDP-Gal (uridine diphosphogalactose), one of the products of GALT, has been described in treated galactosemic patients. We investigated whether galactosemic patients might also have reduced amounts of those macromolecules that depend on UDP-Gal for their biosynthesis. We report a reduction in glycolipids that contain either galactose or its derivative N-acetylgalactosamine and an accumulation of the precursors to these compounds in the brain of a neonate with galactosemia. We also found an imbalance in glycolipids in galactosemic lymphoblasts. This novel biochemical abnormality observed in galactosemic patients is not addressed by dietary galactose-restriction therapy and could explain some of the chronic neurologic and other complications of galactosemia.  相似文献   

20.
Sclerosteosis and Van Buchem disease are related recessive sclerosing bone dysplasias caused by alterations in the SOST gene. We tested the hypothesis that craniodiaphyseal dysplasia (CDD) (MIM 122860), an extremely rare sclerosing bone dysplasia resulting facial distortion referred to as "leontiasis ossea", could also be caused by SOST mutations. We discovered mutations c.61G>A (Val21Met) and c.61G>T (Val21Leu) two children with CDD. As these mutations are located in the secretion signal of the SOST gene, we tested their effect on secretion by transfecting the mutant constructs into 293E cells. Intriguingly, these mutations greatly reduced the secretion of SOST. We conclude that CDD, the most severe form of sclerotic bone disease, is part of a spectrum of disease caused by mutations in SOST. Unlike the other SOST-related conditions, sclerosteosis and Van Buchem disease that are inherited as recessive traits seem to be caused by a dominant negative mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号