首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kir3.1/Kir3.4 channel is activated by Gbetagamma subunits released on binding of acetylcholine to the M2 muscarinic receptor. A mechanism of channel opening, similar to that for the KcsA and Shaker K+ channels, has been suggested that involves translocation of pore lining transmembrane helices and the opening of an intracellular gate at the "bundle crossing" region. However, in the present study, we show that an extracellular gate at the selectivity filter is critical for agonist activation of the Kir3.1/Kir3.4 channel. Increasing the flexibility of the selectivity filter, by disrupting a salt bridge that lies directly behind the filter, abolished both selectivity for K+ and agonist activation of the channel. Other mutations within the filter that altered selectivity also altered agonist activation. In contrast, mutations within the filter that did not affect selectivity had little if any effect on agonist activation. Interestingly, mutation of bulky side chain phenylalanine residues at the bundle crossing also altered both agonist activation and selectivity. These results demonstrate a significant correlation between agonist activation and selectivity, which is determined by the selectivity filter, and suggests, therefore, that the selectivity filter may act as the agonist-activated gate in the Kir3.1/Kir3.4 channel.  相似文献   

2.
The molecular mechanism of ion channel gating remains unclear. Using approaches such as proline scanning mutagenesis and homology modeling, we localize the gate of the K(+) channels controlled by the (beta)gamma subunits of G proteins at the pore-lining bundle crossing of the second transmembrane (TM2) helices. We show that the flexibility afforded by a highly conserved glycine residue in the middle of TM2 is crucial for channel gating. In contrast, flexibility introduced immediately below the gate disrupts gating. We propose that the force produced by channel-G(beta)gamma interactions is transduced through the rigid region below the helix bundle crossing to bend TM2 at the glycine that serves as a hinge and open the gate.  相似文献   

3.
Two-pore domain (K2P) potassium channels are important regulators of cellular electrical excitability. However, the structure of these channels and their gating mechanism, in particular the role of the bundle-crossing gate, are not well understood. Here, we report that quaternary ammonium (QA) ions bind with high-affinity deep within the pore of TREK-1 and have free access to their binding site before channel activation by intracellular pH or pressure. This demonstrates that, unlike most other K(+) channels, the bundle-crossing gate in this K2P channel is constitutively open. Furthermore, we used QA ions to probe the pore structure of TREK-1 by systematic scanning mutagenesis and comparison of these results with different possible structural models. This revealed that the TREK-1 pore most closely resembles the open-state structure of KvAP. We also found that mutations close to the selectivity filter and the nature of the permeant ion profoundly influence TREK-1 channel gating. These results demonstrate that the primary activation mechanisms in TREK-1 reside close to, or within the selectivity filter and do not involve gating at the cytoplasmic bundle crossing.  相似文献   

4.
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.  相似文献   

5.
The Kir3.1/Kir3.4 channel is an inward rectifier, agonist-activated K(+) channel. The location of the binding site within the channel pore that coordinates polyamines (and is thus responsible for inward rectification) and the location of the gate that opens the channel in response to agonist activation is unclear. In this study, we show, not surprisingly, that mutation of residues at the base of the selectivity filter in the pore loop and second transmembrane domain weakens Cs(+) block and decreases selectivity (as measured by Rb(+) and spermine permeation). However, unexpectedly, the mutations also weaken inward rectification and abolish agonist activation of the channel. In the wild-type channel and 34 mutant channels, there are significant (p < 0.05) correlations among the K(D) for Cs(+) block, Rb(+) and spermine permeation, inward rectification, and agonist activation. The significance of these findings is discussed. One possible conclusion is that the selectivity filter is responsible for inward rectification and agonist activation as well as permeation and block.  相似文献   

6.
We used cysteine-modifying reagents to localize the pH-sensitive gate in the renal inward-rectifier K(+) channel Kir1.1a (ROMK1). Cytoplasmic-side methanethiosulfonate (MTS) reagents blocked K(+) permeation in native Kir1.1 channels, expressed in Xenopus oocytes. Replacement of three cysteines in the N-terminus, C-terminus, and transmembrane domains eliminated this sensitivity to MTS reagents, as measured with inside-out macropatches. Reintroduction of one cysteine at 175-Kir1.1a in the second transmembrane domain allowed blockade of the open channel by the MTS reagents MTSEA, MTSET, and MTSES and by Ag(+). However, closure of the channel by low pH protected it from modification. Cysteine was also introduced into position G223, which is thought to line the cytoplasmic pore of the channel. MTSET blocked G223C in both the open and closed state. In contrast, MTSEA reduced G223C single-channel conductance from 40 to 23 pS but did not produce complete block. We conclude that cytoplasmic acidification induces a conformational change in the channel protein that prevents access of cysteine-modifying reagents, and presumably also K(+) ions, to the transmembrane pore from the cytoplasm. This is consistent with localization of the Kir1.1 pH gate at the helix bundle crossing near the cytoplasmic end of the transmembrane pore.  相似文献   

7.
The closed KcsA channel structure revealed a crossing of the cytosolic ends of the transmembrane helices blocking the permeation pathway. It is generally agreed that during channel opening this helical bundle crossing has to widen in order to enable access to the inner cavity. Here, we address the question of whether the opening of the inner gate is sufficient for ion conduction, or if a second gate, located elsewhere, may interrupt the ion flow. We used fluorescence lifetime measurements on KcsA channels labeled with tetramethylrhodamine at residues in the C-terminal end of TM2 to report on the opening of the lower pore region. We found two populations of channels with different fluorescence lifetimes, whose relative distribution agrees with the open probability of the channel. The absolute fraction of channels found with an open bundle crossing is too high to explain the low open probability of the KcsA-WT channel. We found the same distribution as in the WT channel between open and closed bundle crossing for two KcsA mutants, A73E and E71A, which significantly increase open probability at low pH. These two results strongly suggest that a second gate in the ion permeation pathway exists. The location of the mutations A73E and E71A suggests that the second gate may be the selectivity filter, which resides in an inactivated state under steady-state conditions. Since the long closed times observed in KcsA-WT are not present in KcsA-A73E or -E71A, we propose that KcsA-WT remains predominantly in a state with an open bundle crossing but closed (inactivated) second gate, while the mutations A73E and E71A sharply decrease the tendency to enter in the inactivated state, and as a consequence, the second gate is predominantly open at steady state. The ability to monitor the opening of the bundle crossing optically enables the direct recording of the movement of the pore helices while the channel is functioning.  相似文献   

8.
Regulation of ion conduction through the pore of a K+ channel takes place through the coordinated action of the activation gate at the bundle crossing of the inner helices and the inactivation gate located at the selectivity filter. The mechanism of allosteric coupling of these gates is of key interest. Here we report new insights into this allosteric coupling mechanism from studies on a W67F mutant of the KcsA channel. W67 is in the pore helix and is highly conserved in K+ channels. The KcsA W67F channel shows severely reduced inactivation and an enhanced rate of activation. We use continuous wave EPR spectroscopy to establish that the KcsA W67F channel shows an altered pH dependence of activation. Structural studies on the W67F channel provide the structures of two intermediate states: a pre- open state and a pre-inactivated state of the KcsA channel. These structures highlight key nodes in the allosteric pathway. The structure of the KcsA W67F channel with the activation gate open shows altered ion occupancy at the second ion binding site (S2) in the selectivity filter. This finding in combination with previous studies strongly support a requirement for ion occupancy at the S2 site for the channel to inactivate.  相似文献   

9.
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera   总被引:9,自引:0,他引:9       下载免费PDF全文
The Kir3.1 K(+) channel participates in heart rate control and neuronal excitability through G-protein and lipid signaling pathways. Expression in Escherichia coli has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2 A. The selectivity filter is identical to the Streptomyces lividans K(+) channel within error of measurement (r.m.s.d.<0.2 A), suggesting that K(+) selectivity requires extreme conservation of three-dimensional structure. Multiple K(+) ions reside within the pore and help to explain voltage-dependent Mg(2+) and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid-body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5-biphosphate-interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore.  相似文献   

10.
Ion channels open and close in response to changes in transmembrane voltage or ligand concentration. Recent studies show that K+ channels possess two gates, one at the intracellular end of the pore and the other at the selectivity filter. In this study we determined the location of the activation gate in a voltage-gated Ca2+ channel (VGCC) by examining the open/closed state dependence of the rate of modification by intracellular methanethiosulfonate ethyltrimethylammonium (MTSET) of pore-lining cysteines engineered in the S6 segments of the alpha1 subunit of P/Q type Ca2+ channels. We found that positions above the putative membrane/cytoplasm interface, including two positions below the corresponding S6 bundle crossing in K+ channels, showed pronounced state-dependent accessibility to internal MTSET, reacting approximately 1,000-fold faster with MTSET in the open state than in the closed state. In contrast, a position at or below the putative membrane/cytoplasm interface was modified equally rapidly in both the open and closed states. Our results suggest that the S6 helices of the alpha1 subunit of VGCCs undergo conformation changes during gating and the activation gate is located at the intracellular end of the pore.  相似文献   

11.
The x-ray structure of the KcsA channel at different [K(+)] and [Rb(+)] provided insight into how K(+) channels might achieve high selectivity and high K(+) transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of kappa-conotoxin PVIIA (kappa-PVIIA) to Shaker K(+) channel in the presence of K(+) and Rb(+) was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. kappa-PVIIA inhibition of the Shaker K(+) channel differs in the closed and open state. When K(+) is the only permeant ion, increasing extracellular [K(+)] decreases kappa-PVIIA affinity for closed channels by decreasing the "on" binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K(+)]. In contrast, extracellular [Rb(+)] affects both closed- and open-channel binding. As extracellular [Rb(+)] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb(+). These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with kappa-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.  相似文献   

12.
ROMK channels are regulated by internal pH (pH(i)) and extracellular K(+) (K(+)(o)). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H(+), increasing the apparent pKa for inhibition by approximately 0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K(+)(o), consistent with coupling between the responses to pH(i) and K(+)(o). The ion selectivity sequence of the activation of the channel by cations was K(+) congruent with Rb(+) > NH(4)(+) > Na(+), similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K(+) from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K(+)(o). We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K(+)(o) between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K(+) to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba(2+) block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H(+). We conclude that decreasing pH(I) increases the sensitivity of ROMK2 channels to K(+)(o) by altering the properties of the selectivity filter.  相似文献   

13.
Ding S  Horn R 《Biophysical journal》2003,84(1):295-305
The cytoplasmic ends of the four S6 transmembrane segments of voltage-gated potassium channels converge in a bundle crossing that acts as the activation gate that opens in response to a depolarization. To explore whether the cytoplasmic extension of the S6 segment (the S6 tail) plays a role in coupling voltage sensor and activation gate movements, we examined the effect of cysteine substitution from residues N482 to T489 on the kinetics and voltage-dependence of S4 charge movement and on the kinetics of deactivation of ionic current. Among these mutants, F484C has the steepest voltage-dependent charge movement, the largest Q-V shift, and the fastest OFF gating currents. Further study of the residue at position 484, using mutagenesis and modification of F484C by cysteine reagents, suggests that aromaticity at this position is essential to maintain normal coupling. We used periodicity analysis to appraise the possibility that the S6 tail has an alpha-helical structure. Although we obtained an alpha-periodicity index of 2.41 for gating current parameters, a new randomization test produced an indecisive conclusion about the secondary structure of this region. Taken together, our results suggest that the tail end of S6 plays an important role in coupling between activation gating and charge movement.  相似文献   

14.
A constriction formed by the crossing of the second transmembrane domains of ASIC1, residues G432 to G436, forms the narrowest segment of the pore in the crystal structure of chicken ASIC1, presumably in the desensitized state, suggesting that it constitutes the "desensitization gate" and the "selectivity filter." Residues Gly-432 and Asp-433 occlude the pore, preventing the passage of ions from the extracellular side. Here, we examined the role of Asp-433 and Gly-432 in channel kinetics, ion selectivity, conductance, and Ca(2+) block in lamprey ASIC1 that is a channel with little intrinsic desensitization in the pH range of maximal activity, pH 7.0. The results show that the duration of open times depends on residue 433, with Asp supporting the longest openings followed by Glu, Gln, or Asn, whereas other residues keep the channel closed. This is consistent with residue Asp-433 forming the pore's closing gate and the properties of the side chain either stabilizing (hydrophobic amino acids) or destabilizing (Asp) the gate. The data also show residue 432 influencing the duration of openings, but here only Gly and Ala support long openings, whereas all other residues keep channels closed. The negative charge of Asp-433 was not required for block of the open pore by Ca(2+) or for determining ion selectivity and unitary conductance. We conclude that the conserved residue Asp-433 forms the closing gate of the pore and thereby determines the duration of individual openings while desensitization, defined as the permanent closure of all or a fraction of channels by the continual presence of H(+), modulates the on or off position of the closing gate. The latter effect depends on less conserved regions of the channel, such as TM1 and the extracellular domain. The constriction made by Asp-433 and Gly-432 does not select for ions in the open conformation, implying that the closing gate and selectivity filter are separate structural elements in the ion pathway of ASIC1. The results also predict a significantly different conformation of TM2 in the open state that relieves the constriction made by TM2, allowing the passage of ions unimpeded by the side chain of Asp-433.  相似文献   

15.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K(+)-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K(+) concentrations ([K(+)]o). We found that Kir4.1 is regulated by K(+)o. Increased [K(+)]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K(+) from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K(+)o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs(+) and Ba(2+) substitute for K(+) and prevent deactivation of the channel in the absence of K(+)o. Cs(+) blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb(+) and NH4(+) permeate Kir4.1, only Rb(+) is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel's sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4(+) to permeate the channel without inducing these changes.  相似文献   

16.
Classical electrophysiology and contemporary crystallography suggest that the activation gate of voltage-dependent channels is on the intracellular side, but a more extracellular "pore gate" has also been proposed. We have used the voltage dependence of block by extracellular Y(3+) as a tool to locate the activation gate of the alpha1G (Ca(V)3.1) T-type calcium channel. Y(3+) block exhibited no clear voltage dependence from -40 to +40 mV (50% block at 25 nM), but block was relieved rapidly by stronger depolarization. Reblock of the open channel, reflected in accelerated tail currents, was fast and concentration dependent. Closed channels were also blocked by Y(3+) at a concentration-dependent rate, only eightfold slower than open-channel block. When extracellular Ca(2+) was replaced with Ba(2+), the rate of open block by Y(3+) was unaffected, but closed block was threefold faster than in Ca(2+), suggesting the slower closed-block rate reflects ion-ion interactions in the pore rather than an extracellularly located gate. Since an extracellular blocker can rapidly enter the closed pore, the primary activation gate must be on the intracellular side of the selectivity filter.  相似文献   

17.
Interactions of Na(+), K(+), Rb(+), and Cs(+) ions within the selectivity filter of a potassium channel have been investigated via multiple molecular dynamics simulations (total simulation time, 48 ns) based on the high resolution structure of KcsA, embedded in a phospholipid bilayer. As in simulations based on a lower resolution structure of KcsA, concerted motions of ions and water within the filter are seen. Despite the use of a higher resolution structure and the inclusion of four buried water molecules thought to stabilize the filter, this region exhibits a significant degree of flexibility. In particular, pronounced distortion of filter occurs if no ions are present within it. The two most readily permeant ions, K(+) and Rb(+), are similar in their interactions with the selectivity filter. In contrast, Na(+) ions tend to distort the filter by binding to a ring of four carbonyl oxygens. The larger Cs(+) ions result in a small degree of expansion of the filter relative to the x-ray structure. Cs(+) ions also appear to interact differently with the gate region of the channel, showing some tendency to bind within a predominantly hydrophobic pocket. The four water molecules buried between the back of the selectivity filter and the remainder of the protein show comparable mobility to the surrounding protein and do not exchange with water molecules within the filter or the central cavity. A preliminary comparison of the use of particle mesh Ewald versus cutoff protocols for the treatment of long-range electrostatics suggests some difference in the kinetics of ion translocation within the filter.  相似文献   

18.
We investigated the features of the inward-rectifier K channel Kir1.1 (ROMK) that underlie the saturation of currents through these channels as a function of permeant ion concentration. We compared values of maximal currents and apparent K(m) for three permeant ions: K(+), Rb(+), and NH(4)(+). Compared with K(+) (i(max) = 4.6 pA and K(m) = 10 mM at -100 mV), Rb(+) had a lower permeability, a lower i(max) (1.8 pA), and a higher K(m) (26 mM). For NH(4)(+), the permeability was reduced more with smaller changes in i(max) (3.7 pA) and K(m) (16 mM). We assessed the role of a site near the outer mouth of channel in the saturation process. This site could be occupied by either permeant ions or low-affinity blocking ions such as Na(+), Li(+), Mg(2+), and Ca(2+) with similar voltage dependence (apparent valence, 0.15-0.20). It prefers Mg(2+) over Ca(2+) and has a monovalent cation selectivity, based on the ability to displace Mg(2+), of K(+) > Li(+) ~ Na(+) > Rb(+) ~ NH(4)(+). Conversely, in the presence of Mg(2+), the K(m) for K(+) conductance was substantially increased. The ability of Mg(2+) to block the channels was reduced when four negatively charged amino acids in the extracellular domain of the channel were mutated to neutral residues. The apparent K(m) for K(+) conduction was unchanged by these mutations under control conditions but became sensitive to the presence of external negative charges when residual divalent cations were chelated with EDTA. The results suggest that a binding site in the outer mouth of the pore controls current saturation. Permeability is more affected by interactions with other sites within the selectivity filter. Most features of permeation (and block) could be simulated by a five-state kinetic model of ion movement through the channel.  相似文献   

19.
In this study we present evidence that residue Val282 in the S6 transmembrane segment of the calcium-activated KCa3.1 channel constitutes a key determinant of channel gating. A Gly scan of the S6 transmembrane segment first revealed that the substitutions A279G and V282G cause the channel to become constitutively active in zero Ca2+. Constitutive activity was not observed when residues extending from Cys276 to Ala286, other than Ala279 and Val282, were substituted to Gly. The accessibility of Cys engineered at Val275 deep in the channel cavity was next investigated for the ion-conducting V275C/V282G mutant and closed V275C channel in zero Ca2+ using Ag+ as probe. These experiments demonstrated that internal Ag+ ions have free access to the channel cavity independently of the channel conducting state, arguing against an activation gate located at the S6 segment C-terminal end. Experiments were also conducted where Val282 was substituted by residues differing in size and/or hydrophobicity. We found a strong correlation between constitutive activity in zero Ca2+ and the hydrophobic energy for side chain burial. Single channel recordings showed finally that constitutive activation in zero Ca2+ is better explained by a model where the channel is locked in a low conducting state with a high open probability rather than resulting from a change in the open/closed energy balance that would favor channel openings to a full conducting state in the absence of Ca2+. We conclude that hydrophobic interactions involving Val282 constitute key determinants to KCa3.1 gating by modulating the ion conducting state of the selectivity filter through an effect on the S6 transmembrane segment.  相似文献   

20.
Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (NaVAB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629–631 as the narrowest part of the permeation pathway with an estimated pore diameter of <5.8 Å. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in NaVAB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channel's selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号