共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase. 相似文献
2.
Oocyte maturation is an important process required to achieve optimal oocyte quality, and later affects fertilization potential and subsequent embryo development. The maturation process includes synchronized nuclear and cytoplasmic remodeling, in which cytoskeletal and centrosome dynamics play an important role and significantly participate in cellular signaling. Centrosome remodeling within the maturing oocyte is essential for accurate meioisis I and II spindle formation, specifically to separate chromosomes accurately during the two successive, highly asymmetric meiotic cell divisions. Centrosomal abnormalities result in inaccurate microtubule organization and inaccurate chromosome alignment, with failures in chromosome segregation leading to aneuploidy and chromosomal abnormalities. The present review is focused on cytoskeletal and centrosome remodeling during oocyte maturation, with specific attention to γ-tubulin, pericentrin, the Nuclear Mitotic Apparatus (NuMA) protein, and microtubule organization. Species-specific differences will be discussed for rodent (mouse) and non-rodent (bovine, porcine) species, and for human oocytes. 相似文献
3.
Activity of Cdc2, the universal inducer of mitosis, is regulated by phosphorylation and binding to cyclin B. Comparative studies using oocytes from several amphibian species have shown that different mechanisms allow Cdc2 activation and entry into first meiotic division. In Xenopus, immature oocytes stockpile pre-M-phase promoting factor (MPF) composed of Cdc2-cyclin B complexes maintained inactive by Thr14 and Tyr15 phosphorylation of Cdc2. Activation of MPF relies on the conversion of pre-MPF into MPF by Cdc2 dephosphorylation, implying a positive feedback loop known as MPF auto-amplification. On the contrary, it has been proposed that pre-MPF is absent in immature oocyte and that MPF activation depends on cyclin synthesis in some fishes and other amphibians. We demonstrate here that MPF activation in the axolotl oocyte, an urodele amphibian, is achieved through mechanisms resembling partly those found in Xenopus oocyte. Pre-MPF is present in axolotl immature oocyte and is activated during meiotic maturation. However, monomeric Cdc2 is expressed in large excess over pre-MPF, and pre-MPF activation by Cdc2 dephosphorylation takes place progressively and not abruptly as in Xenopus oocyte. The intracellular compartmentalization as well as the low level of pre-MPF in axolotl oocyte could account for the differences in oocyte MPF activation in both species. 相似文献
4.
Michelle T. Panzica 《Cell cycle (Georgetown, Tex.)》2018,17(5):529-534
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes. 相似文献
5.
Wang K Jiang GJ Wei L Liang XW Miao DQ Sun SC Guo L Wang ZB Lu SS 《Zygote (Cambridge, England)》2011,19(4):307-313
Survivin is a novel member of the inhibitor of apoptosis gene family that bear baculoviral IAP repeats (BIRs), whose physiological roles in regulating meiotic cell cycle need to be determined. Confocal microscopy was employed to observe the localization of survivin in rat oocytes. At the germinal vesicle (GV) stage, survivin was mainly concentrated in the GV. At the prometaphase I (pro-MI) and metaphase I (MI) stage, survivin was mainly localized at the kinetochores, with a light staining detected on the chromosomes. After transition to anaphase I or telophase I stage, survivin migrated to the midbody, and signals on the kinetochores and chromosomes disappeared. At metaphase II (MII) stage, survivin became mainly localized at the kinetochores again. Microinjection of oocytes with anti-survivin antibodies at the beginning of the meiosis, thus blocking the normal function of survivin, resulted in abnormal spindle assembly, chromosome segregation and first polar body emission. These results suggest that survivin is involved in regulating the meiotic cell cycle in rat oocytes. 相似文献
6.
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation. 相似文献
7.
The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone 总被引:7,自引:0,他引:7
Baculoviral IAP repeat proteins (BIRPs) may affect cell death, cell division, and tumorigenesis. The C. elegans BIRP BIR-1 was localized to chromosomes and to the spindle midzone. Embryos and fertilized oocytes lacking BIR-1 had defects in chromosome behavior, spindle midzone formation, and cytokinesis. We observed indistinguishable defects in fertilized oocytes and embryos lacking the Aurora-like kinase AIR-2. AIR-2 was not present on chromosomes in the absence of BIR-1. Histone H3 phosphorylation and HCP-1 staining, which marks kinetochores, were reduced in the absence of either BIR-1 or AIR-2. We propose that BIR-1 localizes AIR-2 to chromosomes and perhaps to the spindle midzone, where AIR-2 phosphorylates proteins that affect chromosome behavior and spindle midzone organization. The human BIRP survivin, which is upregulated in tumors, could partially substitute for BIR-1 in C. elegans. Deregulation of bir-1 promotes changes in ploidy, suggesting that similar deregulation of mammalian BIRPs may contribute to tumorigenesis. 相似文献
8.
In vivo activation of a microtubule-associated protein kinase during meiotic maturation of the Xenopus oocyte 总被引:9,自引:0,他引:9
O Haccard C Jessus X Cayla J Goris W Merlevede R Ozon 《European journal of biochemistry》1990,192(3):633-642
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation. 相似文献
9.
Cyclin synthesis, modification and destruction during meiotic maturation of the starfish oocyte 总被引:21,自引:0,他引:21
The pattern of protein synthesis in oocytes of starfish Marthasterias glacialis changes during 1-methyladenine-induced meiotic maturation. One of the newly synthesized proteins, a major 54-kDa polypeptide, was synthesized continuously after activation but was destroyed abruptly just before appearance of the polar bodies at each meiotic division. This protein thus resembles the cyclin proteins identified in cleaving sea urchin and clam embryos. RNA extracted from oocytes before and after maturation encoded virtually identical polypeptides when translated in the reticulocyte lysate. However, there was poor correspondence between the in vitro translation products and the labelling pattern of intact cells. There was no exact in vitro counterpart to the in vivo-labelled cyclin. Instead, a major polypeptide of 52 kDa was seen which appears to be a precursor of the 54-kDa form of cyclin. The 52-kDa polypeptide was identified as cyclin by hybrid arrest of translation. Cyclin mRNA is ot translated to a significant extent before oocyte activation and is present in oocytes as nonadenylated form. It becomes polyadenylated when the oocytes mature. This behavior is also seen in the case of the mRNA for the small subunit of ribonucleotide reductase, another abundant maternal mRNA whose translation is activated at maturation. 相似文献
10.
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells. 相似文献
11.
《Cell cycle (Georgetown, Tex.)》2013,12(11):2230-2236
Spindly was first identified in Drosophila; its homologues are termed SPDL-1 in Caenorhabditis elegans and Hs Spindly/hSpindly in humans. In all species, Spindly and its homologues function by recruiting dynein to kinetochores and silencing SAC in mitosis of somatic cells. Depletion of Spindly causes an extensive metaphase arrest during somatic mitoses in Drosophila, C. elegans and humans. In Drosophila, Spindly is required for shedding of Rod and Mad2 from the kinetochores in metaphase; in C. elegans, SPDL-1 presides over the recruitment of dynein and MDF-1 to the kinetochores; in humans, Hs Spindly is required for recruiting both dynein and dynactin to kinetochores but it is dispensable for removal of checkpoint proteins from kinetochores. The present study was designed to investigate the localization and function of the Spindly homologue (mSpindly) during mouse oocyte meiotic maturation by immunofluorescent analysis, and by overexpression and knockdown of mSpindly. We found that mSpindly was typically localized to kinetochores when chromatin condensed into chromosomes after GVBD. In metaphase of both first meiosis and second meiosis, mSpindly was localized not only to kinetochores but also to the spindle poles. Overexpression of mSpindly did not affect meiotic progression, but its depletion resulted in an arrest of the pro-MI/MI stage, failure of anaphase entry and subsequent polar body emission, and in abnormal spindle morphology and misaligned chromosomes. Our data suggest that mSpindly participates in SAC silencing and in spindle formation as a recruiter and/or a transporter of kinetochore proteins in mouse oocytes, but that it needs to cooperate with other factors to fulfill its function. 相似文献
12.
Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. 总被引:2,自引:0,他引:2
Oocytes secrete soluble factors that regulate the growth and differentiation of follicular cells, including maintenance of the distinctive cumulus cell phenotype. This study determines whether the mitogenic activity of oocytes is developmentally regulated and examines the responsiveness of follicular cells to oocytes at different stages of follicular development. Prepubertal SV129 mice of varying ages were primed with 5 IU equine chorionic gonadotropin (eCG) and oocytes/zygotes collected either 46 h post-eCG (immature oocytes), 12 h after administration of 5 IU human CG (hCG; ovulated ova), or 12 h post-hCG and mating (zygotes). Mural granulosa cells (MGC) from antral follicles and GC from preantral follicles were cultured +/- denuded oocytes (DO) for 18 h, followed by a 6-h pulse of [(3)H]thymidine as an indicator of cellular DNA synthesis. Coculturing MGC with meiotically maturing oocytes led to a dose-dependent increase in [(3)H]thymidine incorporation (20-fold above control levels at 0.5 DO/microl). However, [(3)H] counts remained unchanged from control levels when cultured with meiotically incompetent DO from 11- to 15-day-old mice (3% germinal vesicle breakdown; GVB), irrespective of dose of DO or developmental status of GC (MGC or preantral GC). In some treatments, spontaneous meiotic resumption of competent oocytes was prevented by culturing with 5 microM milrinone, a selective inhibitor of oocyte-specific cyclic nucleotide phosphodiesterase. The mitogenic capacity of oocytes was found to decline during and after oocyte maturation. [(3)H]Thymidine incorporation in MGC was highest (11-fold above controls) when cultured with meiotically inhibited (milrinone-treated) GV DO, stimulated 5.5-fold by culture with maturing oocytes, 3-fold with ovulated ova, and unstimulated by zygotes. [(3)H]Thymidine incorporation in MGC was not altered by the dose of milrinone, either in the presence or absence of DO. Metaphase I marked the beginning of the decline in the capacity of oocytes to promote MGC DNA synthesis. These results demonstrate that the capacity of oocytes to promote proliferation of granulosa cells follows a developmental program, closely linked to oocyte meiotic status, increasing with the acquisition of meiotic competence and declining during and after oocyte maturation. 相似文献
13.
14.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3365-3372
Survivin is a member of inhibitors of apoptosis proteins (IAPs), which have multiple regulatory functions in mitosis, but its roles in meiosis remain unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. Survivin displayed maximal expression levels in GV stages, and then gradually decreased from Pro-MI to MII stages. Immunofluorescent staining showed that survivin was restricted to the germinal vesicle, associated with centromeres from pro-metaphase I to metaphase I stages, distributed at the midzone and midbody of anaphase and telophase spindles, and located to centromeres at metaphase II stages. Depletion of survivin by antibody injection and morpholino injection resulted in severe chromosome misalignment, precocious polar body extrusion, and larger-than-normal polar bodies. Overexpression of survivin resulted in severe chromosome misalignment and prometaphase I or metaphase I arrest in a large proportion of oocytes. Our data suggest that survivin is required for chromosome alignment and that it may regulate spindle checkpoint activity during mouse oocyte meiosis. 相似文献
15.
Ding L Pan R Huang X Wang JX Shen YT Xu L Zhang Y Liu Y He XQ Yang XJ Qi ZQ Wang HL 《Theriogenology》2012,78(4):784-792
Although there is considerable evidence that diabetes can adversely affect meiosis in mammalian oocytes, acetylation status of oocytes in a diabetic environment remains unclear. The objective was to determine acetylation or deacetylation patterns (based on immunostaining) of H3K9, H3K14, H4K5, H4K8, H4K12, and H4K16 sites at various stages during meiosis in murine oocytes from control and diabetic mice. According to quantitative real time polymerase chain reaction (qPCR), mean ± SEM relative expression of Gcn5 (1.70 ± 0.14 at metaphase [M]I and 1.27 ± 0.01 at MII, respectively), Ep300 (1.74 ± 0.04 at MI and 1.80 ± 0.001 at MII), and Pcaf (2.01 ± 0.03 at MI and 1.41 ± 0.18 at MII) mRNA in oocytes from diabetic mice were higher than those from controls (P < 0.05), whereas there was no difference (P > 0.05) during the germinal vesicle (GV) stage between the two groups (1.23 ± 0.04 for Gcn5, 0.82 ± 0.06 for Ep300, and 0.80 ± 0.07 for Pcaf). Conversely, relative mRNA expression concentrations of Hdac1, Hdac2, Hdac3, Sirt1 and Sirt2 during the germinal vesicle stage were lower in oocytes of diabetic mice (0.24 ± 0.03 for Hdac1, 0.11 ± 0.001 for Hdac2, 0.31 ± 0.03 for Hdac3, 0.28 ± 0.02 for Sirt1, and 0.55 ± 0.02 for Sirt2; P < 0.05). Similarly, the expression concentrations of these genes at the MI stage were lower in oocytes from diabetic mice (0.79 ± 0.12 for Hdac1, 0.72 ± 0.001 for Hdac2, 0.02 ± 0.001 for Sirt1, and 0.84 ± 0.08 for Sirt2; P < 0.05). Their expression concentrations at the MII stage were also lower in oocytes from diabetic mice (0.46 ± 0.03 for Hdac1, 0.93 ± 0.01 for Hdac2, 0.56 ± 0.01 for Hdac3, 0.01 ± 0.002 for Sirt1, and 0.84 ± 0.04 for Sirt2; P < 0.05). At the MI stage, however, there was no difference in the expression of Hdac3 between the two groups of oocytes (0.96 ± 0.03; P > 0.05). Taken together, diabetes altered the intracellular histone modification system, which may have contributed to changes in histone acetylation, and may be involved in the compromised maturation rate of oocytes in diabetic humans. 相似文献
16.
Seung Yeop You Yong Seok Park Hyuk-Joon Jeon Dong-Hyung Cho Hong Bae Jeon Sung Hyun Kim 《Cell cycle (Georgetown, Tex.)》2016,15(12):1611-1619
Cytokinesis is the final step in cell division that results in the separation of a parent cell into daughter cells. Unlike somatic cells that undergo symmetric division, meiotic division is highly asymmetric, allowing the preservation of maternal resources for embryo development. Beclin-1/BECN1, the mammalian homolog of yeast Atg6, is a key molecule of autophagy. As part of a class III phosphatidylinositol 3-kinase (PI3K-III) complex, BECN1 initiates autophagosome formation by coordinating membrane trafficking. However, emerging evidence suggests that BECN1 regulates chromosome segregation and cytokinesis during mitosis. Thus, we investigated the function of BECN1 during oocyte meiotic maturation. BECN1 was widely distributed during meiotic maturation forming small vesicles. Interestingly, BECN1 is also detected at the midbody ring during cytokinesis. Depletion of BECN1 impaired the cytokinetic abscission, perturbing the recruitment of ZFYVE26 at the midbody. Similar phenotypes were observed when PI3K-III activity was inhibited. However, inhibition of autophagy by depleting Atg14L did not disturb meiotic maturation. Therefore, our results not only demonstrate that BECN1 as a PI3K-III component is essential for cytokinesis, but also suggest that BECN1 is not associated with autophagy pathway in mouse oocytes. 相似文献
17.
Shamita B. Shah Colette D. Terry Deborah A. Wells Patrick J. DiMario 《Chromosoma》1996,105(2):111-121
Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II–III oocytes and within the nucleoli of relatively quiescent stage VI oocytes of Xenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II–III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II–III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4′,6-diamidino-2-phenylindole showed condensed DNA within nucleolar FCs of both stage II–III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble. Received: 18 March 1996 / Accepted: 16 April 1996 相似文献
18.
McNally KL Fabritius AS Ellefson ML Flynn JR Milan JA McNally FJ 《Developmental cell》2012,22(4):788-798
Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism. 相似文献
19.
A pathway containing the Ipl1/aurora protein kinase and the spindle midzone protein Ase1 regulates yeast spindle assembly 总被引:2,自引:0,他引:2
It is critical to elucidate the pathways that mediate spindle assembly and therefore ensure accurate chromosome segregation during cell division. Our studies of a unique allele of the budding yeast Ipl1/Aurora protein kinase revealed that it is required for centrosome-mediated spindle assembly in the absence of the BimC motor protein Cin8. In addition, we found that the Ase1 spindle midzone-associated protein is required for bipolar spindle assembly. The cin8 ipl1 and cin8 ase1 double mutant cells exhibit similar defects, and Ase1 overexpression completely restores spindle assembly in cin8 ipl1 strains. Consistent with the possibility that Ipl1 regulates Ase1, an ase1 mutant lacking the Ipl1 consensus phosphorylation sites cannot assemble spindles in the absence of Cin8. In addition, Ase1 phosphorylation and localization were altered in an ipl1 mutant. We therefore propose that Ipl1/Aurora and Ase1 constitute a previously unidentified spindle assembly pathway that becomes essential in the absence of Cin8. 相似文献