首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The cellulase gene celA of Clostridium thermocellum coding for the thermostable endoglucanase A was transferred from Escherichia coli to Bacillus subtilis 168 and B. stearothermophilus CU21 using plasmids derived from the Bacillus vector pUB110. When the structural part of the gene was joined to a pUB110 promoter the recombinant plasmids (pSE102, pSE105) were stably maintained and expressed carboxymethylcellulase (CMCase) activity. In B. stearothermophilus CU21 (pSE105) the clostridial CMCase was produced over a wide temperature range up to the maximal growth temperature (68° C). In contrast to E. coli, all of the CMCase synthesized in bacilli was released into the culture medium. About 50% of the extracellular protein secreted by B. subtilis 168 (pSE102) carrying the celA gene consisted of endoglucanase A. These findings demonstrate the feasibility of producing cellulolytic enzymes from thermophilic anaerobes in bacilli.  相似文献   

2.
A host-vector system for inducible secretion during the logarithmic growth phase in Bacillus subtilis has been developed. The B. subtilis levansucrase gene promoter and the region encoding its signal sequence have been used. The endoglucanase A of Clostridium thermocellum was used as a model protein to test the efficiency of the system. Effective inducible secretion of the endoglucanase A was observed when either the levansucrase signal sequence or its own signal sequence was used. Expression of the endoglucanase A in different genetic backgrounds of B. subtilis showed that its regulation was similar to that of levansucrase, and high enzyme activity was recovered from the culture supernatant of a hyperproducing B. subtilis sacU(Hy) strain. The molecular weight of 46,000 estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the secreted endoglucanase A is compatible with the calculated molecular weight of the mature polypeptide.  相似文献   

3.
Summary The tac promoter originally constructed for the use inEscherichia coli was fused to an endoglucanase structural gene isolated fromBacillus subtilis and the expression of the chimeric gene inB. subtilis was observed. The tac promoter-controlled gene expressed well inB. subtilis and produced endoglucanase during the exponential growth phase.  相似文献   

4.
A 0.4-kb ScaI-HpaI fragment, 199bp upstream of the structural gene for alkaline endoglucanase, from the alkalophilic Bacillus sp. KSM-64, was found to be essential for the extracellular production of the enzyme by recombinant Bacillus subtilis cells. We constructed a new vector, pHSP64 (5.5 kb), using pHY300PLK and part of the 5′ region of the endoglucanase that contained a possible promoter region. Using recombinant B. subtilis cells that carried this vector, very high production of two endoglucanases and of chloramphenicol acetyltransferase was done.  相似文献   

5.
Summary The cyclomaltodextrin glucanotransferase (CGTase, E.C. 2.4.1.19) gene from an alkalophilic Bacillus circulans var. alkalophilus ATCC21783 was cloned into Escherichia coli and B. subtilis. When cloned from E. coli to B. subtilis, the entire insert containing the CGTase gene was, depending on the plasmid construction, either unstable or the recombinant B. subtilis did not secrete the enzyme in significant amounts. To achieve efficient enzyme production in B. subtilis, the gene was placed under the control of the B. amyloliquefaciens -amylase promoter. In one of the constructions, both the promoter and the signal sequence of the gene were replaced with those of B. amyloliquefaciens, whereas in another construction only the promoter area was exchanged. The recombinant B. subtilis clones transformed with these plasmid constructions secreted CGTase into the culture medium 14 times as much as did the parental strain in shake flask cultures. In fermentor cultures in an industrially feasible medium the enzyme production was substantially higher, yielding 1.2 g/l of CGTase, which is about 33 times the amount of the enzyme produced by the parental strain in corresponding fermentations. Both of the plasmid constructions were stable when grown over 50 generations without antibiotic selection.  相似文献   

6.
Summary A gene for encoding cellulase was cloned from Bacillus sp. 79-23 into Escherichia coli and the nucleotide sequence was determined. The cellulase gene, designated as celS, was composed of 1,497 base pairs and the nucleotide sequence of the celS gene was highly homologous to those of other B. subtilis cellulase genes. The enzyme encoded by celS was highly active on carboxymethylcellulose but also exhibited activity towards avicel and p-nitrophenyl--spd-cellobiopyranoside. When its native promoter was replaced with a strong B. subtilis promoter, the extracellular cellulase was produced up to 8.5 units per ml in B. subtilis DB104.  相似文献   

7.
A new gene (named AP gene) encoding an alkaline serine protease with dehairing function was cloned from Bacillus pumilus UN-31-C-42 and its nucleotide sequence was determined. The expression of AP gene was induced with IPTG in Escherichia coli after the mature protease region was cloned into pET15b and SDS-PAGE showed expressed product clearly, but no alkaline protease activity was detected. In order to express the AP gene in B. subtilis, a recombinant expression plasmid was constructed which contained a promoter Bp53 (also from B. pumilus), the AP gene and an E. coli–B. subtilis shuttle vector pSUGV4. This plasmid was introduced into B. subtilis WB600 and the transformant displayed the hydrolyzed zone on a milk plate. The expressed product can be easily detected with SDS-PAGE and the fermentation fluid of the transformant showed low alkaline protease activity and dehairing activity. This is the first report of a gene cloned from B. pumilus, encoding an alkaline serine protease, which can alone accomplish the whole dehairing process.  相似文献   

8.
Summary A gene for endoglucanase ofBacillus subtilis has been inserted into a Bacillus expression plasmid containing a strong BJ27 promoter and a synthetic ribosome binding site. Secondary structure analysis of mRNA showed the presence of a strong hairpin loop burying the SD sequence and the initiation codon. Alteration of secondary structure at this site by deletion analysis revealed a correlation between endoglucanase expression and accessibility of the ribosome binding site. Elimination of secondary structures increased endoglucanase expression over five-fold to a level at which endoglucanase occupied 60% of total protein which was secreted into culture medium.  相似文献   

9.
A new food-grade expression system was constructed for Bacillus subtilis based on replicative food-grade expression plasmids and auxotrophic complementation. The food-grade B. subtilis host FG01 was created by knockout of the dal locus from the chromosome of B. subtilis 168. Two food-grade expression plasmids pXFGT03 and pXFGT05 were constructed by combining a novel theta-type Bacillus replicon with the B. subtilis endogenous gene dal and P43 promoter; while pXFGT05 was derived from pXFGT03 by deletion of two open reading frames (ORFs) from the original replicon. Upon transformation of FG01 with pXFGT03 or pXFGT05, the host phenotype was complemented on Luria–Bertani agar plates by the plasmid-coded dal gene, which served as a food-grade selection marker for recombinants. Results showed that deletion of the two ORFs had no impact on plasmid replication. A reporter gene bgaB was cloned into pXFGT03 and pXFGT05, respectively, under control of the P43 promoter, and it was successfully expressed in this food-grade expression system. Segregational stabilities of two recombinant plasmids were investigated, and they were fully stable.  相似文献   

10.
Summary The structural gene for the Bacillus stearothermophilus glycogen branching enzyme (glgB) was cloned in Escherichia coli. Nucleotide sequence analysis revealed a 1917 nucleotide open reading frame (ORF) encoding a protein with an Mr of 74787 showing extensive similarity to other bacterial branching enzymes, but with a shorter N-terminal region. A second ORF of 951 nucleotides encoding a 36971 Da protein started upstream of the glgB gene. The N-terminus of the ORF2 gene product had similarity to the Alcaligenes eutrophus czcD gene, which is involved in cobalt-zinc-cadmium resistance. The B. stearothermophilus glgB gene was preceded by a sequence with extensive similarity to promoters recognized by Bacillus subtilis RNA polymerase containing sigma factor H (E - H). The glgB promoter was utilized in B. subtilis exclusively in the stationary phase, and only transcribed at low levels in B. subtilis spoOH, indicating that sigma factor H was essential for the expression of the glgB gene in B. subtilis. In an expression vector, the B. stearothermophilus glgB gene directed the synthesis of a thermostable branching enzyme in E. coli as well as in B. subtilis, with optimal branching activity at 53° C.  相似文献   

11.
The cyclomaltodextrinase gene fromBacillus subtilis high-temperature growth transformant H-17 was cloned on separatePstI,BamHI, andEcoRI fragments into the plasmid vector pUC18, but was expressed in an inactive form in the host,Escherichia coli DH5. High level constitutive expression of the gene product was also detrimental to theE. coli host, which led to structural instability of the recombinant plasmid. The cyclomaltodextrinase gene was cloned on a 3-kbEcoRI fragment into the plasmid vector pPL708, and the fragment was structurally maintained in the hostB. subtilis YB886. The cloned gene product was synthesized in an enzymatically active form in theB. subtilis host; however, expression was at a low level. Subcloning of the 3-kbEcoRI fragment into pUC18 and transformation intoE. coli XL1-Blue (FlacIq) indicated that the cyclomaltodextrinase gene was cloned with its own promoter, since expression of the gene occurred in the absence of IPTG. Subcloning of the cyclomaltodextrinase gene downstream from theBacillus temperate phage SPO2 promoter of pPL708 may increase expression of this gene.Florida Agricultural Experiment Station Journal Series No. R-02177  相似文献   

12.
The gene for an alkaline endoglucanase from the alkalophilic Bacillus sp. KSM-64 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The nucleotide sequence of a 4.1-kb region of the HindIII insert had two open reading frames, ORF-1 and ORF-2. The protein deduced from ORF-1 was composed of 244 amino acids with an Mr of 27,865. Subcloning analysis proved that the alkaline endoglucanase was encoded by ORF-2 (822 amino acids with an Mr of 91,040). Upstream from ORF-2, there were three consensus like sequences of the sigma A-type promoter of Bacillus subtilis, a putative Shine-Dalgarno sequence (AGGAGGT), and a catabolite repression operator-like sequence (TGTAAGC-GGTTAACC). The HindIII insert was subcloned into a shuttle vector, pHY300PLK, and the encoded alkaline endoglucanase gene was highly expressed both in E. coli and B. subtilis. One of the three promoter-like sequences in ORF-2 could be suitable for high levels of enzyme expression in both host organisms.  相似文献   

13.
Summary The gene coding forBordetella pertussis P.69 protein was cloned and expressed inBacillus subtilis. The expression vector contained the promoter region and the sequence coding for the whole or truncated signal sequence of the -amylase gene fromB. amyloliquefaciens. Using either construction the level of expression was relatively low and the protein was found in the particulate fraction. The protein migrated in gel electrophoresis slower than expected from its deduced amino acid content thereby giving the appearance of having an anomalously large molecular mass.  相似文献   

14.
Summary The native promoter of a xylanase gene isolated from Clostridium thermocellum was replaced with a strong promoter screened from Bacillus subtilis chromosomes. A part of the C-terminal region of the gene which is not related to the xylanase activity was removed. With the modified xylanase gene, B. subtilis was transformed and grown in LB medium. The xylanase gene was expressed well in B. subtilis and extracellular xylanase was produced up to 30 units per ml when the growth reached OD600 of 4.8.  相似文献   

15.
Bacillus subtilis B3 was found to produce lipopeptides iturins and fengycin that have activity against several plant pathogens such as Fusarium graminearum, Rhizoctonia solani, Rhizoctonia cerealis, and Pyricularia grisea. A 3642-bp genomic region of B. subtilis B3 comprising srfDB3, aspB3, lpaB3, and yczEB3 genes that resulted in biosynthesis of surfactin in B. subtilis 168 was cloned, sequenced, and characterized. Among them, the srfDB3 gene encodes thioesterase, which is required for biosynthesis of surfactin in B. subtilis; the aspB3 gene encodes a putative aspartate aminotransferase-like protein; the lpaB3 encodes phosphopantetheinyl transferase, which shows high identity to the product of lpa-14 gene regulating the biosynthesis of iturin A and surfactin in B. subtilis RB14; the yczEB3 encodes a YczE-like protein with significant similarities in signal peptide and part of the ABC transport system. The genetic regions between the srfD gene and lpa gene from B. subtilis B3 and B. subtilis A13, which produces iturin A, contain an approximate 1-kb nucleotide fragment encoding an aspartate aminotransferase-like protein; however, the relevant regions from B. subtilis 168 and B. subtilis ATCC21332 producing surfactin comprise an approximately 4-kb nucleotide fragment encoding four unknown proteins. There is 73% identity between the Lpa family and the Sfp family, although both are highly conserved.Received: 29 October 2002 / Accepted: 6 December 2002  相似文献   

16.
Summary We have constructed promoter probe vectors with the Escherichia coli galactokinase monitoring system that can be used in Bacillus subtilis. In vivo studies with these vectors demonstrated that the E. coli trp and tac(trp::lac) promoter regions could be utilized in B. subtilis. These promoter regions and the promoter region for the erythromycin resistance gene originating from Staphylococcus aureus were preferentially utilized during the stationary growth phase of B. subtilis, whereas the B. subtilis P21K and P29K promoters were utilized during the exponential growth phase and decreased rapidly during the stationary phase. The apparent strength of these promoters of E. coli in B. subtilis, in terms of galactokinase units, was comparable with those of the B. subtilis promoters.  相似文献   

17.
18.
Xylanase B from Paenibacillus barcinonensis was cloned in shuttle vectors for Escherichia coli and Bacillus subtilis, and expressed in Bacillus hosts. Several recombinant strains were constructed, among which B. subtilis MW15/pRBSPOX20 showed the highest production. This recombinant strain consists of a protease double mutant host containing P. barcinonensis xynB gene under the control of a phage SPO2 strong promoter. Maximum production was found when the strain was cultured in nutrient broth supplemented with xylans. Analysis of xylanase B location in B. subtilis MW15/pRBSPOX20 showed that the enzyme remained cell-associated in young cultures, consistent with its intracellular location in its original host, P. barcinonensis, and the lack of a signal peptide. However, when cultures reached the stationary phase, xylanase B was released to the external medium as a result of cell lysis. The amount of enzyme located in the supernatants of old cultures could account for 50% of total xylanase activity. Analysis by SDS–PAGE showed that xylanase B is an abundant protein found in the culture medium in late stationary phase cultures.  相似文献   

19.
4-α-Glucanotransferases possess strong transglycosylation activity which has been used in various carbohydrate chemistry fields. Due to safety issues of the recombinant enzymes we chose Bacillus subtilis as an expression host to produce a thermostable 4-α-glucanotransferase from Thermus scotoductus (TSαGT). The HpaII promoter in the Gram-positive bacterial vector pUB110 was used first to express TSαGT gene in B. subtilis. However, the activity of TSαGT in B. subtilis was only 4% of that in our previous Escherichia coli system. Two expression systems constructed by sequential alignment of another constitutive promoter for either α-amylase from B. subtilis NA64 or maltogenic amylase from Bacillus licheniformis downstream of the HpaII promoter elevated the TSαGT productivity by 11- and 12-fold, respectively, compared to the single HpaII promoter system. In conclusion, the dual promoter systems in this study were much better than the single promoter system to express the TSαGT gene in B. subtilis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号