首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of communication specificity between cells in culture   总被引:15,自引:9,他引:6       下载免费PDF全文
We have examined the specificity of communication between cells in culture by co-culturing cells derived from mammalian, avian, and arthropod organisms. Both mammalian and avian culture cells have similar gap junctional phenotypes, while the insect (arthropod) cell lines have a significantly different gap junctional structure. Electrophysiological and ultrastructural methods were used to examine ionic coupling and junctional interactions between homologous and heterologous cell types. In homologous cell systems, gap junctions and ionic coupling are present at a high incidence. Also, heterologous vertebrate cells in co-culture can communicate readily. By contrast, practically no coupling (0-8%) is detectable between heterologous insect cell lines (Homopteran or Lepidopteran) and vertebrate cells (mammalian myocardial or 3T3 cells). No gap junctions have been observed between arthropod and vertebrate cell types, even though the heterologous cells may be separated by less than 10 nm. In additional studies, a low incidence of coupling was found between heterologous insect cell lines derived from different arthropod orders. However, extensive coupling was detected between insect cell lines that are derived from the same order (Homoptera). These observations suggest that there is little or no apparent specificity for communication between vertebrate cells in culture that express the same gap junctional phenotype, while there is a definite communication specificity that exists between arthropod cells in culture.  相似文献   

2.
Ryanodine受体结构和药理学性质   总被引:3,自引:1,他引:2  
Ryanodine受体(RyR)是存在于细胞内钙库膜上的一种钙释放通道。在哺乳类动物中,RyR存在三种亚型,即骨骼肌型(RyR1)、心肌型(RyR2)和脑型(RyR3),它们分别由ryr1、ryr2和ryr3基因编码。非哺乳类脊椎动物的RyR有另外三种亚型,即同时存在于骨骼肌中的αRyR和βRyR,以及存在于心肌中的另一亚型。前两者在氨基酸序列上分别与RyR1和RyR3有较高的同源性。哺乳类和非哺  相似文献   

3.
A new protein antigen of the nucleolus organizer region (NOR), designated He, was recognized by human autoantibodies obtained from a patient with Raynaud phenomenon. In mitotic cells of all vertebrate species tested. He serum selectively immunostained the chromosomal NORs. A completely unexpected characteristic of the He antigen was its location during interphase. In mammalian cell substrates, it was concentrated in numerous nucleoplasmic granules, with minor amounts of the antigen uniformly distributed throughout the entire nucleus. In interphase nuclei of lower vertebrate cells, however, the antigen was preferentially located in the nucleolus. The antigenicity of He is not dependent on RNA or DNA; its cytochemical properties operationally classify it as a nonhistone component of the chromosome scaffold. The He antigen was present in the residual nucleolar structures of cells that were not at all active in rRNA synthesis, such as mammalian late spermatids and amphibian erythrocytes.  相似文献   

4.
Yoder JA  Litman GW 《Immunogenetics》2011,63(3):123-141
Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.  相似文献   

5.
Several reports have shown the participation of vasoactive endothelins (ETs) in the regulation of vertebrate pigment cells. In the present study, we identified ET receptors in pigment cells of vertebrate species by RT-PCR assays, and compared the differential expression of the various subtypes in each species by quantitative PCR. RT-PCR was performed with specific primers for ETC, ETA(X) or ETA in Xenopus laevis melanophores, ETA or ETB(2) in chicken melanocytes, ETA or ETB in murine (B-16, S-91 or Melan-A) or human (SK-Mel 23 or SK-Mel 28) melanoma cells, and the products obtained were confirmed by cloning and sequencing. The results showed the presence of ETA(X), but not ETA mRNA, and confirmed the expression of ETC in X. laevis melanophores. ETA and ETB(2) mRNAs were also demonstrated in chicken melanocytes. ETA and ETB receptor were identified in S-91, B16 and Melan-A murine cells. In human melanoma cells, SK-Mel 23 and SK-Mel 28, we confirmed the presence of ETB mRNA, and also found ETA mRNA. The comparison between the two subtypes present in the pigment cell of each species and among species demonstrated that the expression of ETAs in chicken, mouse, and human melanocytes is negligible, as is the expression of ETA(X) in Xenopus melanophores. The relative expression, as determined by quantitative PCR, was as follows: chicken ETB>SK-Mel 23 ETB>S91 ETB>Xenopus ETC, suggesting that the endothelin system plays a major role in avian and mammalian pigment cell regulation, as compared to lower vertebrates. The phylogenetic analysis revealed that subtype A receptors were probably the most primitive ET receptors, directly deriving from the ancestral type; all the other receptors, B subtypes and C, originated from diverse derivative molecules.  相似文献   

6.
We studied the effect of temperature on blood rheology in three vertebrate species with different thermoregulation and erythrocyte characteristics. Higher fibrinogen proportion to total plasma protein was found in turtles (20%) than in pigeons (5.6%) and rats (4.2%). Higher plasma viscosity at room temperature than at homeotherm body temperature was observed in rats (1.69 mPa x s at 20 degrees C vs. 1.33 mPa x s at 37 degrees C), pigeons (3.40 mPa x s at 20 degrees C vs. 1.75 mPa x s at 40 degrees C), and turtles (1.74 mPa x s at 20 degrees C vs. 1.32 mPa x s at 37 degrees C). This fact allow us to hypothesize that thermal changes in protein structure may account for an adjustment of the plasma viscosity. Blood viscosity was dependent on shear rate, temperature and hematocrit in the three species. A different behaviour in apparent and relative viscosities between rat and pigeon at environmental temperature was found. Moreover, the blood oxygen transport capacity seems more affected by a reduction of temperature in rats than in pigeons. Both findings indicate a greater influence of temperature on mammalian erythrocyte than on nucleated red cells, possibly as a consequence of differences in thermal sensitivity and mechanical stability between them. A comparison between the three species revealed that apparent blood viscosity measured at homeotherm physiological temperature was linearly related to the hematocrit level of each species. However, when measured at environmental temperature, rat blood showed a higher apparent viscosity than those found in species with non-nucleated red cells, thus indicating a higher impact of temperature decrease on blood viscosity in mammals. This suggest that regional hypothermia caused by cold exposure may affect mammalian blood rheological behaviour in a higher extent than in other vertebrate species having nucleated red cells and, consequently, influencing circulatory function and oxygen transport.  相似文献   

7.
CTGF/Hcs24 is a multifunctional growth factor that potentiates the growth and differentiation of various cells. Our previous study revealed that the 3'-UTR of mammalian CTGF/Hcs24 mRNA contains a small segment that represses the gene expression in cis fashion. In this study, we isolated and characterized a chicken CTGF/Hcs24 cDNA clone. Chicken ctgf/hcs24 mRNA showed highly conserved homology in the ORF to that of mammalian species, whereas the homology in the 3'-UTR was relatively low. Northern blotting analysis revealed that chicken ctgf/hcs24 mRNA was expressed most strongly in cartilage, and also in brain, lung, heart, but faintly in liver. Thereafter we analyzed the functional potential of the 3'-UTR of ctgf/hcs24 cDNA to regulate its gene expression by reporter gene assay, and found that it repressed gene expression in cis fashion, specifically in avian cells, but not in mammalian cells. Conversely, the mammalian 3'-UTR showed less repressive activity in avian cells than in mammalian cells. Deletion analysis showed that a segment near the polyadenyl tail of the 3'-UTR of chicken ctgf/hcs24 played an important functional role, unlike in the mammalian species. Thus, we uncovered a novel mode of functional conservation of the ctgf/hcs24 3'-UTR among vertebrate species mediated by different factors.  相似文献   

8.
The mammalian neocortex is characterized as a six-layered laminar structure, in which distinct types of pyramidal neurons are distributed coordinately during embryogenesis. In contrast, no other vertebrate class possesses a brain region that is strictly analogous to the neocortical structure. Although it is widely accepted that the pallium, a dorsal forebrain region, is specified in all vertebrate species, little is known of the differential mechanisms underlying laminated or non-laminated structures in the pallium. Here we show that differences in patterns of neuronal specification and migration provide the pallial architectonic diversity. We compared the neurogenesis in mammalian and avian pallium, focusing on subtype-specific gene expression, and found that the avian pallium generates distinct types of neurons in a spatially restricted manner. Furthermore, expression of Reelin gene is hardly detected in the developing avian pallium, and an experimental increase in Reelin-positive cells in the avian pallium modified radial fiber organization, which resulted in dramatic changes in the morphology of migrating neurons. Our results demonstrate that distinct mechanisms govern the patterns of neuronal specification in mammalian and avian pallial development, and that Reelin-dependent neuronal migration plays a critical role in mammalian type corticogenesis. These lines of evidence shed light on the developmental programs underlying the evolution of the mammalian specific laminated cortex.  相似文献   

9.
Summary The occurrence of polypeptide YY- and neuropeptide Y-immunoreactive cells and nerves in the pancreas of some species from all the eight main vertebrate groups (cyclostomes, cartilaginous fish, bony fish, amphibia, reptiles, birds, and mammals) was investigated. In addition, an ontogenetic study of these neurohormonal peptides was performed, using the rat pancreas. The distribution of these two peptides was compared with that of the structurally closely related pancreatic polypeptide.Polypeptide YY-immunoreactive cells were found to occur in the endocrine pancreas and neuropeptide Y-immunoreactivity was observed both in neurons and nerve fibres. The polypeptide YY-immunoreactive cells were limited to mammals and reptiles only. Neuropeptide Y-immunoreactive neurons and nerves were observed in reptiles, birds, and mammals only. One reptilian species (out of three) and one mammalian (out of six) failed to show any kind of immunoreactivity for the polypeptide or neuropeptide. Pancreatic polypeptide-immunoreactive cells were found in all the species examined except in the hagfish islet.In rat foetuses, polypeptide YY-immunoreactive cells and neuropeptide Y-immunoreactive nerve elements were first demonstrated at the seventeenth day of gestation, whereas pancreactic peptide-immunoreactive cells did not appear until postnatally, namely in two day-old rats. The polypeptide-containing cells, a new cell type in the endocrine pancreas, are rare. In contrast to the pancreatic peptide cells, they do not seem to have any kind of regional distribution.  相似文献   

10.
E Lazarides  D R Balzer 《Cell》1978,14(2):429-438
The extent of invariance and heterogeneity in desmin, the major component of the muscle form of 100 Å filaments, has been investigated in avian and mammalian muscle and nonmuscle cells with two-dimensional gel electrophoresis and indirect immunofluorescence. Desmin from chick, duck and quail, smooth, skeletal and cardiac muscle cells is resolved into two isoelectric variants, α and β, with each possessing the same charge and electrophoretic mobility in all three avian species irrespective of muscle type. Guinea pig and rat muscle desmin resolves into only one variant; it also possesses the same charge and electrophoretic mobility in the two mammalian species, but it is more acidic and slower in electrophoretic mobility than the two avian variants.In immunofluorescence, desmin is localized together with α-actinin along myofibril Z lines. Antibodies to chick smooth muscle desmin, prepared against the protein purified by preparative SDS gel electrophoresis prior to immunization, cross-react with myofibril Z lines in all three avian species. These antibodies do not cross-react with either rat or guinea pig myofibril Z lines. Similarly, they do not cross-react with avian or mammalian nonmuscle cells grown in tissue culture and known to contain cytoplasmic 100 Å filaments.These results demonstrate that desmin is highly conserved within avian muscle cells and within mammalian muscle cells. It is, however, both biochemically and immunologically distinguishable between avian and mammalian muscle cells, and between muscle and nonmuscle cells. We conclude that there are biochemically and immunologically specific forms of desmin for avian and mammalian muscle cells. Furthermore, within a particular vertebrate species, there are at least two separate classes of 100 Å filaments: the muscle class whose major component is desmin, and the nonmuscle class whose major component is distinct from desmin. Taking into consideration the immunological specificity reported by other laboratories for the 100 Å filaments in glial cells, for neurofilaments and for the epidermal 80 Å keratin filaments, we propose that a given vertebrate species contains at least four major distinguishable classes of 100 Å filaments: muscle 100 Å filaments (desmin filaments), glial filaments, neurofilaments and epidermal keratin filaments.  相似文献   

11.
Red blood cells from the Pacific hagfish (Eptatretus stouti) were found to possess a facilitated diffusion nucleoside transport system insensitive to inhibition by the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). Uridine uptake by this route was saturable (apparent Km 0.14 mM; Vmax 2 mmol/l cells per h at 10 degrees C), inhibited by inosine and adenosine, and blocked both by the vasodilator dipyridamole and by the thiol-reactive agent p-chloromercuriphenylsulphonate. The properties of this carrier resemble closely those of NBMPR-insensitive nucleoside transport systems in some mammalian neoplastic cell lines and in rat red cells. The presence of this type of carrier in a primitive vertebrate suggests that such transporters have a broad biological distribution and that they pre-date or arose at an early stage of vertebrate evolution.  相似文献   

12.
Programmed cell death (apoptosis) is a normally occurring process used to eliminate unnecessary or potentially harmful cells in multicellular organisms. Recent studies demonstrate that the molecular control of this process is conserved phylogenetically in animals. The dad-1 gene, which encodes a novel 113 amino acid protein, was originally identified in a mutant hamster cell line (tsBN7) that undergoes apoptosis at restrictive temperature. We have identified a dad-1 homologue in Caenorhabditis elegans (Ce-dad-1) whose predicted product is > 60% identical to vertebrate DAD-1. A search of the sequence databases indicated that DAD-1-like proteins are also expressed in two plant species. Expression of either human dad-1 or Ce-dad-1 under control of a C.elegans heat-shock-inducible promoter resulted in a reduction in the number of programmed cell death corpses visible in C.elegans embryos. Extra surviving cells were present in these animals, indicating that both the human and C.elegans dad-1 genes can suppress developmentally programmed cell death. Ce-dad-1 was found to rescue mutant tsBN7 hamster cells from apoptotic death as efficiently as the vertebrate genes. These results suggest that dad-1, which is necessary for cell survival in a mammalian cell line, is sufficient to suppress some programmed cell death in C.elegans.  相似文献   

13.
Previous analyses of the nuclear lamina of mammalian cells have revealed three major protein components (lamins A, B and C) that have been identified by protein sequence homology as members of the intermediate filament (IF) protein family. It has been claimed that mammalian cells contain either all three lamins or lamin B alone. Using monoclonal antibodies specific for B-type lamins and cDNA cloning we identified a second major mammalian B-type lamin (murine lamin B2), thus showing that lamin composition in mammals is more complex than previously thought. Lamin B2 is coexpressed with lamin B1 (formerly termed lamin B) in all somatic cells and mammalian species that we analysed, including a variety of cells currently believed to contain only a single lamin. This suggests that two B-type lamins are necessary to form a functional lamina in mammalian somatic cells. By cDNA cloning we found thatXenopus laevis lamin LII is the amphibian homolog of mammalian lamin B2. Lamin expression during embryogenesis of amphibians and mammals shows striking similarities. The first lamins expressed in the early embryo are the two B-type lamins, while A-type lamins are only detected much later in development. These findings indicate that the genomic differentiation into two B-type lamins occurred early in vertebrate evolution and has been maintained in both their primary structure and pattern of expression.  相似文献   

14.
15.
The terminal DNA structure of mammalian chromosomes.   总被引:30,自引:0,他引:30       下载免费PDF全文
In virtually all eukaryotic organisms, telomeric DNA is composed of a variable number of short direct repeats. While the primary sequence of telomeric repeats has been determined for a great variety of species, the actual physical DNA structure at the ends of a bona fide metazoan chromosome with a centromere is unknown. It is shown here that an overhang of the strand forming the 3' ends of the chromosomes, the G-rich strand, is found at mammalian chromosome ends. Moreover, on at least some telomeres, the overhangs are > or = 45 bases long. Such surprisingly long overhangs were present on chromosomes derived from fully transformed tissue culture cells and normal G0-arrested peripheral leukocytes. Thus, irrespective of whether the cells were actively dividing or arrested, a very similar terminal DNA arrangement was found. These data suggest that the ends of mammalian and possibly all vertebrate chromosomes consist of an overhang of the G-rich strand and that these overhangs may be considerably larger than previously anticipated.  相似文献   

16.
Freely existing hemoglobin-bearing cells suspended in a plasmic milieu (erythrocytes) are found in a relatively small number of taxanomically scattered invertebrates. These species include some annelids, echiurids, molluscs, phoronids, nemerteans and echinoderms, e.g. Pista pacifica, Urechis caupo, Noetia ponderosa, Phoronis australis, Lineus fuscoviridis and Cucumaria miniata respectively. The typical invertebrate erythrocyte (hemocyte, coelomocyte) can be described as permanently nucleated, considerably larger than the human red cell, oval or circular in configuration and spherical, biconvex or flattened in profile. The marginal band of the erythrocyte, a bundle of subplasmalemmal microtubules that circumscribes the periphery of the cell and lies in the plane parallel to its flat surface makes its first appearance in certain invertebrates. This structure in association with the cell surface-associated cytoskeleton is responsible for the flattened elliptical shape seen in some invertebrate erythrocytes and endows them with flexibility and resilience to mechanical forces. This in an evolutionarily persistent characteristic that is retained throughout the submammalian vertebrates. The erythrocytes of invertebrates are more morphologically and functionally diversified than the mammalian model. In addition to respiratory activities (oxygen storage and transport) they can sometimes function as vendors of nutrients and participate in other less obvious processes. These cells therefore frequently not only retain organelles that are usually discarded by vertebrate erythrocytes (ribosomes, golgi apparatus, etc.) but may also depending upon the species, manifest in their cytoplasm organelles and inclusions that are not a normal component of developing or mature submammalian vertebrate and mammalian erythroid cells. Examples of the latter are pigment granules, lipid droplets, extensive glycogen stores and prominent Prussian blue positive inclusions. Erythrocytes in the invertebrates, though presenting certain cytologic and functional features in common, are a heterogenous collection of cells, each tailored for a specific species or group of organisms.  相似文献   

17.
William J Murphy  Roscoe Stanyon  Stephen J O'Brien 《Genome biology》2001,2(6):reviews0005.1-reviews00058
Comparative genome analyses, including chromosome painting in over 40 diverse mammalian species, ordered gene maps from several representatives of different mammalian and vertebrate orders, and large-scale sequencing of the human and mouse genomes are beginning to provide insight into the rates and patterns of chromosomal evolution on a whole-genome scale, as well as into the forces that have sculpted the genomes of extant mammalian species.  相似文献   

18.
The IGFs (IGF-I and IGF-II) are essential for normal mammalian growth and development. Their actions are mediated primarily by their interactions with the type I IGF receptor (IGF-I receptor), a transmembrane tyrosine kinase. The ligands and the IGF-I receptor are structurally related to insulin and to the insulin receptor, respectively. Analysis of evolutionary conservation has often provided insights into essential regions of molecules such as hormones and their receptors. The genes for insulin and IGFs have been partially characterized in a number of vertebrate species extending evolutionarily from humans as far back as fish. The sequences of the exons encoding the mature insulin and IGF peptides are highly conserved among vertebrate species, and IGF-I-Iike molecules are found in species whose origins extend back as much as 550 million years. The insulin receptor is also highly conserved in vertebrate species, and an insulinreceptor-like molecule has been characterized in Drosophila. In contrast, IGF-I receptors have only been characterized in mammalian species and partially studied in Xenopus, in which the tyrosine kinase domain is highly conserved. Studies are presently being undertaken to analyze in more detail the regulation of the genes encoding this important family of growth factors and the structure/function relationships in the gene products themselves. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Mammalian hormones in microbial cells.   总被引:5,自引:0,他引:5  
Hormones and hormone-binding proteins resembling those of vertebrates are widespread in fungi, yeast and bacteria. Functional responses of microbial cells to mammalian hormones have also been found. The evolutionary roots of the vertebrate endocrine system may, therefore, be far more ancient than is generally believed.  相似文献   

20.
Molecular Evolution of Vertebrate Goose-Type Lysozyme Genes   总被引:11,自引:0,他引:11  
We have found that mammalian genomes contain two lysozyme g genes. To better understand the function of the lysozyme g genes we have examined the evolution of this small gene family. The lysozyme g gene structure has been largely conserved during vertebrate evolution, except at the 5' end of the gene, which varies in number of exons. The expression pattern of the lysozyme g gene varies between species. The fish lysozyme g sequences, unlike bird and mammalian lysozyme g sequences, do not predict a signal peptide, suggesting that the encoded proteins are not secreted. The fish sequences also do not conserve cysteine residues that generate disulfide bridges in the secreted bird enzymes, supporting the hypothesis that the fish enzymes have an intracellular function. The signal peptide found in bird and mammalian lysozyme g genes may have been acquired as an exon in the ancestor of birds and mammals, or, alternatively, an exon encoding the signal peptide has been lost in fish. Both explanations account for the change in gene structure between fish and tetrapods. The mammalian lysozyme g sequences were found to have evolved at an accelerated rate, and to have not perfectly conserved the known active site catalytic triad of the bird enzymes. This observation suggests that the mammalian enzymes may have altered their biological function, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号