首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Those genes in Escherichia coli defined by mutations which result in an inability to grow at high temperatures are designated htr, indicating a high temperature requirement. A new htr mutant of E. coli was isolated and characterized and is designated htrD. The htrD gene has been mapped to 19.3 min on the E. coli chromosome. Insertional inactivation of htrD with a mini-Tn10 element resulted in a pleiotropic phenotype characterized by a severe inhibition of growth at 42 degrees C and decreased survival at 50 degrees C in rich media. Furthermore, htrD cells were sensitive to H2O2. Growth rate analysis revealed that htrD cells grow very slowly in minimal media supplemented with amino acids. This inhibitory effect has been traced to the presence of cysteine in the growth medium. Further studies indicated that the rate of cysteine transport is higher in htrD cells relative to the wild type. All of these results, taken together, indicate that the htrD gene product may be required for proper regulation of intracellular cysteine levels and that an increased rate of cysteine transport greatly affects the growth characteristics of E. coli.  相似文献   

2.
Isolation of genes required for hydrogenase synthesis in Escherichia coli   总被引:10,自引:0,他引:10  
A mutant strain of Escherichia coli, strain AK23, is devoid of hydrogenase activity when grown anaerobically on glucose and cannot grow on H2 plus fumarate. From E. coli chromosomal DNA library, a plasmid, pAK23, was isolated which restored hydrogenase activity in this strain. Two smaller plasmids, pAK23C and pAK23S, containing different parts of the insert DNA fragment of plasmid pAK23, were isolated. The former plasmid restored activity in strain AK23 while the latter did not. The smallest active DNA fragment in plasmid pAK23C was 0.9 kb. This gene is designated hydE. Plasmids pAK23 and pAK23S restored activity in another hydrogenase-negative strain, SE-3-1 (hydB), while plasmid pAK23C did not, suggesting that plasmid pAK23 contains two genes required for hydrogenase expression. Strain AK23 was also devoid of formate hydrogenlyase and formate dehydrogenase activities and these activities were restored by some of the plasmids. Hydrogenase and formate-related activities in strain AK23 were restored by growth of cells in a high concentration of nickel. Plasmid pAK23C led to synthesis of a polypeptide of subunit molecular mass 36 kDa and plasmid pAK23S led to synthesis of polypeptides of subunit molecular masses 30 and 41 kDa.  相似文献   

3.
The gene old of bacteriophage P2 is known to (i) cause interference with phage lambda growth; (ii) kill recB- mutants of Escherichia coli after P2 infection; and (iii) determine increased sensitivity of P2 lysogenic cells to X-ray irradiation. In all of these phenomena, inhibition of protein synthesis occurs. We have isolated bacterial mutants, named pin (P2 interference), able to suppress all of the above-mentioned phenomena caused by the old+ gene product and the concurrent protein synthesis inhibition. Pin mutations are recessive, map at 12 min on the E. coli map, and identify a new gene. Satellite bacteriophage P4 does not plate on pin-3 mutant strains and causes cell lethality and protein synthesis inhibition in such mutants. P4 mutants able to grow on pin-3 strains have been isolated.  相似文献   

4.
Escherichia coli was grown anaerobically on sodium fumarate and molecular hydrogen or sodium formate in continuous culture. The maximal growth yield and the maintenance coefficient were determined. In a mineral medium a Y fum max value of 6.6 g dry weight per mol fumarate was found. This value increased to 7.5 when casamino acids were present in the medium. From these data and the corresponding Y ATP max values it could be calculated that per mol of fumarate reduced, 0.4 mol of ATP became available for growth. In batch culture a Yfum value of 4.8 g dry weight per mol fumarate was determined.  相似文献   

5.
We report here that wild-type Escherichia coli grows on N-acetylmuramic acid (MurNAc) as the sole source of carbon and energy. Analysis of mutants defective in N-acetylglucosamine (GlcNAc) catabolism revealed that the catabolic pathway for MurNAc merges into the GlcNAc pathway on the level of GlcNAc 6-phosphate. Furthermore, analysis of mutants defective in components of the phosphotransferase system (PTS) revealed that a PTS is essential for growth on MurNAc. However, neither the glucose-, mannose/glucosamine-, nor GlcNAc-specific PTS (PtsG, ManXYZ, and NagE, respectively) was found to be necessary. Instead, we identified a gene at 55 min on the E. coli chromosome that is responsible for MurNAc uptake and growth. It encodes a single polypeptide consisting of the EIIB and C domains of a so-far-uncharacterized PTS that was named murP. MurP lacks an EIIA domain and was found to require the activity of the crr-encoded enzyme IIA-glucose (EIIA(Glc)), a component of the major glucose transport system for growth on MurNAc. murP deletion mutants were unable to grow on MurNAc as the sole source of carbon; however, growth was rescued by providing murP in trans expressed from an isopropylthiogalactopyranoside-inducible plasmid. A functional His(6) fusion of MurP was constructed, isolated from membranes, and identified as a polypeptide with an apparent molecular mass of 37 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Close homologs of MurP were identified in the genome of several bacteria, and we believe that these organisms might also be able to utilize MurNAc.  相似文献   

6.
Leader peptidase is an essential enzyme of Escherichia coli and is required for protein export. The structural gene for leader peptidase (lep) is separated from its promoter by an upstream gene of unknown function (lepA). The gene lepA was shown by the use of minicell analysis and overproduction to encode a protein of 74,000 daltons. To determine whether this 74,000-dalton protein functions in protein export, a mutant of E. coli H560 was constructed which has a 1.5-kilobase-pair deletion in the lepA gene. The lepA deletion mutant had no apparent defect for growth or protein export, indicating that lepA is nonessential and that the two cotranscribed genes lepA and lep probably have unrelated functions.  相似文献   

7.
8.
9.
Assembly of Escherichia coli fumarate reductase holoenzyme   总被引:1,自引:0,他引:1  
The production and assembly of the four fumarate reductase polypeptides into holoenzyme was studied in vivo in a T7-promoter-conditional expression system. No posttranslational modification of any of the subunits was detected, although the ratio of polypeptides produced varied with the temperature at which expression occurred. FrdC and FrdD, the membrane anchor polypeptides, assembled rapidly into the membrane and then were capped with FrdA and FrdB in separate events. Truncation of the C-terminal domain of FrdD by insertion of transposon Tn5 into the frdD cistron interfered with membrane insertion of the anchor polypeptides and assembly of the holoenzyme. Proteolytic degradation of truncated FrdD was implicated in the production of a soluble FrdABC trimer.  相似文献   

10.
Strains of Escherichia coli amplifying the intrinsic membrane enzyme fumarate reductase accommodate the overproduced enzyme by increasing the amount of membrane material, in the form of intracellular tubular structures. These tubules have been observed in strains harbouring multicopy frd plasmids and in ampicillin hyper-resistant strains. A procedure has been developed for isolation of tubules nearly free of cytoplasmic membrane. Using protein A-gold labelling and optical diffraction of electron micrographs, a model for tubule structure is proposed. The tubules have a lower lipid/protein ratio than the cytoplasmic membrane, with the enzyme accounting for greater than 90% of the protein in the tubules. Both cytoplasmic membranes and tubules from amplified strains are enriched in cardiolipin and have a more fluid fatty acid composition than wild-type strains. Mutants defective in cardiolipin synthesis produce tubules in response to excess fumarate reductase, but these tubules have an altered appearance, indicating that lipid-protein interactions may be important for tubule assembly.  相似文献   

11.
We have constructed four deletion derivatives of the cloned dnaK gene. Plasmid pDD1, in which the last 10 amino acids of the DnaK protein have been replaced by three different amino acids derived from the pBR322 vector, was as effective as plasmid pKP31, from which it was derived, in restoring the ability of a dnaK null mutant, Escherichia coli BB1553, to plate lambda phage and to grow at high temperatures. The other three mutations, involving much larger deletions of the dnaK gene, did not restore the ability to plate lambda phage or the ability to grow at high temperatures. Plasmid pKUC2, which contains the whole dnaK gene and its promoters, was capable of restoring the ability of E. coli BB1553 to plate lambda phage but, surprisingly, it did not restore the ability to grow at high temperatures, even though it was shown that the DnaK protein was efficiently expressed in these cultures. By transposon mutagenesis and sub-cloning, we have shown the presence of a second gene in plasmid pKP31 which is required for high-temperature growth of E. coli BB1553. This gene, which we call htg A, is presumably also defective in the dnaK null mutant E. coli BB1553. We have also demonstrated that the inability of E. coli K756 to grow above 43.5 degrees C is complemented by sub-clones which contain the htg A gene, but not by plasmid pKUC2.  相似文献   

12.
Thermotolerance in Escherichia coli is induced by exposing cells to a brief heat shock (42 degrees C for 15 min). This results in resistance to the lethal effect of exposure to a higher temperature (50 degrees C). Mutants defective in the recA, uvrA and xthA genes are more sensitive to heat than the wild-type. However, after development of thermotolerance these mutants are like the wild-type in their heat sensitivity. This suggests that thermotolerance is an inducible response capable of protecting cells from the lethal effects of heat, independently of recA, uvrA and xthA. Thermotolerance does not develop in a dnaK mutant. In addition, the dnaK mutant is sensitive to heat and H2O2, but is resistant to UV irradiation. This implies that the E. coli heat-shock response includes a mechanism that protects cells from heat and H2O2, but not from UV.  相似文献   

13.
A positive selection procedure is described for the isolation of hydrogenase-defective mutant strains of Escherichia coli. Mutant strains isolated by this procedure can be divided into two major classes. Class I mutants produced hydrogenase activity (determined by using a tritium-exchange assay) and formate hydrogenlyase activity but lacked the ability to reduce benzyl viologen or fumarate with H2 as the electron donor. Class II mutants failed to produce active hydrogenase and hydrogenase-dependent activities. All the mutant strains produced detectable levels of formate dehydrogenase-1 and -2 and fumarate reductase. The mutation in class I mutants mapped near 65 min of the E. coli chromosome, whereas the mutation in class II mutants mapped between srl and cys operons (58 and 59 min, respectively) in the genome. The class II Hyd mutants can be further subdivided into two groups (hydA and hydB) based on the cotransduction characteristics with cys and srl. These results indicate that there are two hyd operons and one hup operon in the E. coli chromosome. The two hyd operons are needed for the production of active hydrogenase, and all three are essential for hydrogen-dependent growth of the cell.  相似文献   

14.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains.  相似文献   

15.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

16.
Isolation and characterization of the Escherichia coli mutH gene product   总被引:28,自引:0,他引:28  
The Escherichia coli mutH gene product has been isolated in near homogeneous form using an in vitro complementation assay for DNA mismatch correction (Lu, A.-L., Clark, S., and Modrich, P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4639-4643) which is dependent on mutH function. The protein has a subunit Mr of 25,000, and purified preparations contain a Mg2+-dependent endonuclease activity which cleaves 5' to the dG of d(GATC) sequences to generate 5'-phosphoryl and 3'-hydroxyl termini. Symmetrically methylated d(GATC) sites are resistant to the endonuclease, hemimethylated sequences are cleaved on the unmethylated strand, and unmethylated d(GATC) sites are usually subject to scission on only one DNA strand. Although this endonuclease activity is extremely weak (less than 1 scission/h/mutH monomer equivalent) and cleavage at a d(GATC) site does not depend on the presence of a mismatched base pair within the DNA substrate, the activity does not appear to be a contaminant of mutH preparations. d(GATC) endonuclease activity and mutH complementing activity co-purify through multiple column steps without change in relative specific activities, and both activities co-electrophorese under native conditions. These findings suggest that the mutH product functions at the strand discrimination stage of mismatch correction and that this stage of the reaction involves scission of the unmethylated DNA strand.  相似文献   

17.
18.
Isolation and characterization of the Escherichia coli mutL gene product   总被引:33,自引:0,他引:33  
The Escherichia coli mutL gene product has been purified to near homogeneity from an overproducing clone. The mutL locus encodes a polypeptide of 70,000 daltons as determined by denaturing gel electrophoresis. The native molecular weight of MutL protein as calculated from the sedimentation coefficient of 5.5 S and Stokes radius of 61 A is 139,000 daltons, indicating that MutL exists as a dimer in solution. In addition to its ability to complement methyl-directed DNA mismatch repair in mutL-deficient cell-free extracts, DNase I protection experiments demonstrate that the purified MutL protein interacts with the MutS-heteroduplex DNA complex in the presence of ATP.  相似文献   

19.
Interactions of oxaloacetate with Escherichia coli fumarate reductase   总被引:1,自引:0,他引:1  
Fumarate reductase of Escherichia coli is converted to a deactivated state when tightly bound by oxaloacetate (OAA). Incubation of the inhibited enzyme with anions or reduction of the enzyme by substrate restores both the activity of the enzyme and its sensitivity to thiol reagents. In these respects the enzyme behaves like cardiac succinate dehydrogenase. Close to an order of magnitude difference was found to exist between the affinities of OAA for the oxidized (KD approximately 0.12 microM) and reduced (KD approximately 0.9 microM) forms of fumarate reductase. Redox titrations of deactivated fumarate reductase preparations have confirmed that reductive activation, as in cardiac succinate dehydrogenase (B. A. C. Ackrell, E. B. Kearney, and D. Edmondson (1975) J. Biol. Chem. 250, 7114-7119), is the result of reduction of the covalently bound FAD moiety and not the non-heme iron clusters of the enzyme. However, the processes differed for the two enzymes; activation of fumarate reductase involved 2e- and 1H+, consistent with reduction of the flavin to the anionic hydroquinone form, whereas the process requires 2e- and 2H+ in cardiac succinate dehydrogenase. The reason for the difference is not known. The redox potential of the FAD/FADH2 couple in FRD (Em approximately -55 mV) was also slightly more positive than that in cardiac succinate dehydrogenase (-90 mV).  相似文献   

20.
Escherichia coli grew anaerobically on L-malate only in the presence of H2; 91% of the L-malate utilized was converted to succinate. Anaerobically isolated membrane vesicles catalyzed the reduction of fumarate with H2 and contained a b-type cytochrome. Cytochrome c552 was present in the "periplasmic space."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号