首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium constant of the phosphoglyceromutase reaction was determined over a range of pH (5.4-7.9), in solutions of different ionic strength (0.06-0.3) and in the presence of Mg(2+), at 30 degrees C and at 20 degrees C. The values obtained (8.65-11.65) differ substantially from previously published values. The third acid dissociation constants were redetermined for 2- and 3-phosphoglycerate, and in contrast with previous reports the pK values (7.03 and 6.97 respectively at zero ionic strength) were closely similar. The Mg(2+)-binding constants were measured spectrophotometrically and the values, 286mm(-1) and 255mm(-1) for 2- and 3-phosphoglycerate at pH7 and ionic strength 0.02, were also very similar. From the relative lack of effect of temperature, pH and ionic strength it is concluded that the equilibrium constant differs from unity largely because of entropic factors. At low ionic strength, in the neutral region, the pH-dependence can be attributed to the small difference in the acid dissociation constants, but the difference in dissociation constants does not explain the pH-dependence in the acid region or at high ionic strength. Within physiological ranges of pH, Mg(2+) concentration and ionic strength there will be little variation in equilibrium constant.  相似文献   

2.
Male BALB/C mice were injected intraperitoneally with 2.5 i.u. of gonadotrophin. After the injection, increase of β-glucuronidase activity was first observed in the microsomal fraction. By 36h 45–50% of the total homogenate activity was found in the microsomal fraction compared with 20–25% in the control microsomal fraction. From 36 to 80h not only microsomal β-glucuronidase but also lysosomal β-glucuronidase increased progressively. After 69h stimulation with 2.5 i.u. of gonadotrophin, d-[1-14C]glucosamine or l-[U-14C]leucine was injected intraperitoneally. After a further 3h the kidneys were homogenized and five particulate fractions were prepared by differential centrifugation. The β-glucuronidase in the microsomal and lysosomal fractions was released respectively by ultrasonication and by freezing and thawing treatment. The enzyme was purified by organic-solvent precipitation and by sucrose-density-gradient centrifugation. The results demonstrated the incorporation of these two labels into the mouse renal β-glucuronidase. The microsomal β-glucuronidase was much more radioactive than the lysosomal enzyme and approx. 80% of the newly synthesized enzyme appeared in microsomes and approx. 20% of that was found in lysosomes at this period. These results suggest that the mouse renal β-glucuronidase is a glycoprotein and that the newly synthesized enzyme is transported from endoplasmic reticulum to lysosomes.  相似文献   

3.
Kidney -glucuronidase activity in C57BL/K1 and DBA/2/K1 male mice differs about ten times, C57 giving low and DBA high values. F1 males have intermediate activities. Male liver as well as female kidney and liver invariably give low values. The most likely interpretation for this difference between the two strains is a genetic variation at a single locus.This work was supported by the Nilsson-Ehle fund, the Marcus Borgström fund, and the Hierta memorial fund.  相似文献   

4.
5.
The presence of a precursor form of β-glucuronidase, with a subunit molecular weight of 75,000 was demonstrated in mouse kidney. This was later processed to the mature form, with subunit molecular weight of 71,500. Tissue fractionation revealed that the precursor was associated with the microsomes whereas the mature form was associated with the lysosomes. In mice lacking egasyn both forms of β-glucuronidase were present, but the rate of processing was elevated compared to normal.  相似文献   

6.
The magnitude and kinetics of β-glucuronidase induction in mouse kidney are determined by a cis-acting regulatory gene, Gus-r, that is closely linked to the enzyme structural gene. The accumulation of β-glucuronidase mRNA during induction is much slower than the turnover time of the mRNA, suggesting progressive acquisition of mRNA synthesizing capacity during induction. Counts of the numbers of induced cells present at various times of induction in strains carrying three different alleles of Gus-r show that all potentially responsive cells respond immediately. The level of induction is progressive in individual cells and does not involve continued recruitment of new cells into the induced population. It appears that during induction each chromosome becomes progressively more active in directing the synthesis of β-glucuronidase.  相似文献   

7.
A β-glucuronidase has been isolated from pig kidney and purified 1600-fold using sodium desoxycholate precipitation, ammonium sulphate fractionation, heat treatment and chromatography on Sephadex G200, DEAE-cellulose (DE-52) and hydroxyapatite. The enzyme activity was assayed using oestrone 3-glucuronide as substrate; the final specific activity was 254 nmol oestrone/min/mg of protein. The purified enzyme showed apparent homogeneity in gel filtration and polyacrylamide gel electrophoresis. The pig kidney β-glucuronidase has a single pH optimum of 4.0–4.4 in acetate- and 5.4 in citrate-buffer; an activation energy of 16,800 cal/mol and a molecular weight of 275,000 were estimated. The KM for oestrone 3-glucuronide was 22.6 μM. The enzyme was not inhibited by N-ethylmaleimide nor by dithioerythritol, however, it was strongly inhibited by Hg2+. Oestradiol-17β 3-glucuronide and oestriol 3-glucuronide acted as competitive inhibitors, whereas oestradiol-17β 17β-glucuronide, oestriol 16α-glucuronide, testosterone 17-glucuronide and cholesteryl 3-glucuronide were uncompetitive, pregnanediol 3-glucuronide was noncompetitive, and Cortisol 21-glucuronide gave a mixed type inhibition. The synthetic β-d-glucuronides of phenolphthalein, p-nitrophenol, naphthol, 6-bromo-naphthol and methylumbelliferone all inhibited the hydrolysis of oestrone 3-glucuronide; the inhibition was of a more complex type than simple competitive inhibition.  相似文献   

8.
β-Glucuronidase activity was measured in mouse embryos during the preimplantation period of development by using a microfluorometric assay. A 100-fold increase in activity was observed between 57 (8-cell stage) and 84 hr (morulae) of development. Activity changes between 30 and 60 hr were also significant. Genetic variants of β-glucuronidase occur between the strains of mice C57BL6J and C3HHeJ which differ in levels of activity and heat denaturation kinetics. Activity changes and heat denaturation kinetics of β-glucuronidase in C57BL6, C3HHeJ and F1 hybrid embryos were compared, and it was demonstrated that paternal genes were expressed during the 100-fold increase in activity and that embryonic genes may be functioning between 30 and 60 hr of development.  相似文献   

9.
Hydrolysis of 3-methylumbelliferyl glucuronide by liver microsomal β-glucuronidase is enhanced about 2-fold by micromolar concentrations of Ca2+; half-maximal stimulation occurs with 0.35 μM Ca2+. Dissociation of the enzyme from microsomal membranes by various treatments increases basal β-glucuronidase activity and markedly decreases the sensitivity of the enzyme to Ca2+. Under similar conditions, the soluble lysosomal form of the enzyme is insensitive to Ca2+. Ca2+ stimulation was unaltered by addition of calmodulin inhibitors or exogenous calmodulin. Thus, interaction of cytosolic Ca2+ with membrane bound β-glucuronidase may modulate glucuronidation in intact hepatocytes via a novel, calmodulin-independent mechanism.  相似文献   

10.
A gene complex consists of a structural gene with its associated regulatory information; together they behave as the functional and evolutionary unit of mammalian chromosomes. The use of congenic lines, in which alternate forms, or haplotypes, of a gene complex are transferred into a common genetic background by repeated backcrossing, provides a means of comparing the regulatory properties of different haplotypes of a gene complex without the complications introduced by extraneous genetic differences. We have now carried out such a study of the A, B, and H haplotypes of the -glucuronidase gene complex, [Gus], in mice. These haplotypes were derived from strains A/J, C57BL/6J, and C3H/HeJ and were compared against the C57BL/6J genetic background. Enzyme structure was compared in terms of charge (isoelectric point), stability (rate of thermal denaturation), substrate affinity (for 4 MU glucuronide), and antigenicity (reactivity with a standard antibody). Compared to the B form, the enzyme coded by the A haplotype has a lower isoelectric point, and that coded by the H haplotype is less stable. The decreased stability is the result of a lower activation energy for the thermal denaturation reaction. These differences were maintained in the congenic strains. All three enzyme forms showed identical substrate affinities. Antigenicity per enzyme unit was also identical for all three, indicating that none lacks an antigenic site possessed by the others and that they all possess the same catalytic activity per molecule. The expression of alleles of the Gus-t temporal locus within the gene complex was not affected by transfer into the C57BL/6 genetic background. The same developmental switches in enzyme activity were seen in each case. Transfer into the C57Bl/6 background also did not affect expression of the Gus-r regulator determining androgen inducibility of -glucuronidase synthesis in kidney epithelial cells. However, enzyme accumulation in induced cells was altered when the haplotypes were transferred into the C57BL/6 genetic background. Since the rate of synthesis was not affected, it suggests that the genetic differences between strains that are not linked to the [Gus] complex affect the rate of enzyme loss by degradation or secretion. -Glucuronidase in liver is present in both lysosomes and endoplasmic reticulum (microsomes). The relative amount of enzyme at each site depended on both the indentity of the structural allele and the function of unlinked genetic modifiers. Within the C57BL/6 background the percentage of total enzyme present in the microsome fraction was the order A>B>H. For the H form of the enzyme the percentage was appreciably greater in the C3H genetic background compared to C57BL/6. As expected, then, the [Gus] complex contains all of the genetic determinants of enzyme structure detected by thermal stability and isoelectric point measurements. Additionally, the complex contains all of the genetically determined differences between strains in the regulation of -glucuronidase synthesis, including the programming of synthesis during development and the responsiveness of the [Gus] complex to hormonal stimulation. In contrast, genetic determinants of posttranslational processing are located elsewhere, including factors affecting enzyme localization and secretion/degradation. These results illustrate the utility of congenic strains for minimizing other genetic variables in characterizing the regulatory properties of alternate haplotypes of a gene complex.This work was supported by USPHS Research Grant GM 19521.  相似文献   

11.
The class I β-1,3-glucanases are basic, vacuolar enzymes implicated in the defense of plants against pathogen infection. The tobacco (Nicotiana tabacum L.) enzyme is synthesized as a preproprotein with an N-terminal signal peptide for targeting to the lumen of the endoplasmic reticulum and an N-glycosylated C-terminal extension which is lost during protein maturation. The transport and processing of β-1,3-glucanase in cellsuspension cultures of the tobacco cultivar Havana 425 was investigated by pulse-chase labelling and cell fractionation. We verified that mature β-1,3-glucanase is localized in the vacuole of the suspension-cultured cells. Comparison of the time course of processing in homogenates, the soluble fraction, and membrane fractions indicates that proglucanase is transported from the endoplasmic reticulum via the Golgi compartment to the vacuole. Processing to the mature form occurs in the vacuole. Treatment of cells with tunicamycin, which inhibits N-glycosylation, and digestion of the 35S-labelled processing intermediates with endoglycosidase H indicate that β-1,3-glucanase has a single N-glycan attached to the C-terminal extension. Glycosylation is not required for proteolytic processing or correct targeting to the vacuole.  相似文献   

12.
C57BL/Kl, DBA/2/Kl, and backcross male mice have been analyzed for H-2 type, serum testosterone level, and kidney β-glucuronidase activity. No associations or correlations were found among these three parameters in the backcross material.  相似文献   

13.
Rat liver -glucuronidase was studied by sequential lectin affinity chromatography. -Glucuronidase glycopeptides were obtained by extensive Pronase digestion followed byN-[14C]acetylation and desialylation by neuraminidase treatment. According to the distribution of the radioactivity in the various fractions obtained by chromatography on different lectins, and on the assumption that all glycopeptides were acetylated to the same specific radioactivity, a relative distribution of glycan structure types is proposed. The presence of complex biantennary and oligomannose type glycans (56.8% and 42.7%, respectively) was indicated by Concanavalin A-Sepharose chromatography.Ulex europaeus agglutinin-agarose chromatography revealed the presence of (1-3) linked fucose in some of the complex biantennary type glycans (16.6% of the total glycopeptides). Wheat germ agglutinin chromatography indicated that the minority (0.5%) were hybrid or poly (N-acetyllactosamine) type glycans. Furthermore, the absence of O-glycans, tri-, tetra- and bisected biantennary type glycans was demonstrated by analysis of Concanavalin A-Sepharose unbound fraction by chromatography on immobilized soybean agglutinin,Ricinus communis agglutinin andPhaseolus vulgaris erythroagglutinin.  相似文献   

14.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

15.
Transient expression of the β-glucuronidase (GUS) gene introduced into Arabidopsis thaliana intact plants by T-DNA after vacuum infiltration of Agrobacterium tumefaciens was followed. The first incidence of GUS activity was found 2 - 3 d after treatment and a peak of activity one week after treatment in both A. thaliana races, Columbia and C24. GUS activity was sharply increased by cultivation of Arabidopsis plants at elevated temperature (29 °C) compared to cultivation at 25 °C. The density of inocula also influenced the GUS activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Transgenic plants hold many promises as viable production hosts for therapeutic recombinant proteins. Many efforts have been devoted to increase the expression level of the proteins, but the efforts for developing economic processes to purify those proteins are lacking. In this report, aqueous two-phase extraction (ATPE) was investigated as an alternative for the separation of an acidic recombinant protein, β-glucuronidase (rGUS), from transgenic tobacco. Screening experiments by fractional factorial designs showed that PEG concentration and ionic strength of the system significantly affected the partitioning of native tobacco proteins and GUS. Response surface methodology was used to determine an optimized aqueous two-phase system for the purification of rGUS from transgenic tobacco. In a 13.4% (w/w) PEG 3400/18% (w/w) potassium phosphate system, 74% of the rGUS was recovered in the top PEG-rich phase while more than 90% of the native tobacco proteins were removed in the interphase and the bottom phase. A purification factor of about 20 was achieved in this process. The most important impurity from tobacco, Rubisco, was largely removed from the rGUS in the recovered phase.  相似文献   

17.
Attempted synthesis of testosterone glucuronide using commercial UDP-glucuronyl transferase from either bovine or ovine sources was unsuccessful, giving 2–5% yields. This low yield was due to contaminating -glucuronidase which hydrolysed the product. Limitation of glucuronidase activity using improved pH control and inhibitors, plus optimisation of other reaction conditions, increased the yield to 20–30% with the ovine enzyme and allowed practical preparative synthesis.  相似文献   

18.
Summary Using naphthol AS-BI -D glucuronide as a substrate and diazotized pararosanilin as a coupling reagent, the distribution of -glucuronidase was studied throughout mouse molar tooth development. A strongly positive reaction was not only observed in some of the cellular components of the stellate reticulum of the enamel organ, but also in certain cells of the subodontoblastic cell zone. A moderate reaction was noted in the distal cytoplasm of the odontoblasts particularly in the older ones which were found in the cuspal areas. A mild reaction was elicited in the stratum intermedium and a weak one in the ameloblasts and prospective dental pulp.Supported PHS. Grant No. 2800-02 National Institute of Dental Research. National Institutes of Health.  相似文献   

19.
Summary Ornithine decarboxylase, a key enzyme in polyamine biosynthesis and cell growth, has been localized in mouse kidney by autoradiography after administration of radiolabeled -difluoromethylornithine. This drug is an enzyme-activated irreversible inhibitor of ornithine decarboxylase and forms a covalent bond with the enzyme. It was found that ornithine decarboxylase is present in all cell types studied but that the highest content occurs in the proximal convoluted tubules followed by the distal convoluted tubules and the collecting tubules. The majority of the enzyme is located in the cytoplasm but about 10–15% is present in the nuclei (often associated with nucleolus-like components) of the cells of the proximal and distal convoluted tubules. The labeled ornithine decarboxylase was lost rapidly from both nucleus and cytoplasm of all the cell types examined, and labeling by radioactive -difluoromethylornithine was greatly reduced if the mice were pretreated for 5 h with cycloheximide to block protein synthesis. These results indicate that ornithine decarboxylase turns over rapidly in all of the cells.  相似文献   

20.
The downstream targets of amyloid β (Aβ)-oligomers remain elusive. One hypothesis is that Aβ-oligomers interrupt axonal transport. Although previous studies have demonstrated Aβ-induced transport blockade, early effects of low-n soluble Aβ-oligomers on axonal transport remain unclear. Furthermore, the cargo selectivity for such deficits (if any) or the specific effects of Aβ on the motility kinetics of transported cargoes are also unknown. Toward this, we visualized axonal transport of vesicles in cultured hippocampal neurons treated with picomolar (pm) levels of cell-derived soluble Aβ-oligomers. We examined select cargoes thought to move as distinct organelles and established imaging parameters that allow organelle tracking with consistency and high fidelity - analyzing all data in a blinded fashion. Aβ-oligomers induced early and selective diminutions in velocities of synaptic cargoes but had no effect on mitochondrial motility, contrary to previous reports. These changes were N-methyl D-aspartate receptor/glycogen synthase kinase-3β dependent and reversible upon washout of the oligomers. Cluster-mode analyses reveal selective attenuations in faster-moving synaptic vesicles, suggesting possible decreases in cargo/motor associations, and biochemical experiments implicate tau phosphorylation in the process. Collectively, the data provide a biological basis for Aβ-induced axonal transport deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号