首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although hypothermia is one of the most powerful modulators that can reduce ischemic injury, the effects of hypothermia on the function of the cardiac autonomic nerves in vivo are not well understood. We examined the effects of hypothermia on the myocardial interstitial norepinephrine (NE) and ACh releases in response to acute myocardial ischemia and to efferent sympathetic or vagal nerve stimulation in anesthetized cats. We induced acute myocardial ischemia by coronary artery occlusion. Compared with normothermia (n = 8), hypothermia at 33 degrees C (n = 6) suppressed the ischemia-induced NE release [63 nM (SD 39) vs. 18 nM (SD 25), P < 0.01] and ACh release [11.6 nM (SD 7.6) vs. 2.4 nM (SD 1.3), P < 0.01] in the ischemic region. Under hypothermia, the coronary occlusion increased the ACh level from 0.67 nM (SD 0.44) to 6.0 nM (SD 6.0) (P < 0.05) and decreased the NE level from 0.63 nM (SD 0.19) to 0.40 nM (SD 0.25) (P < 0.05) in the nonischemic region. Hypothermia attenuated the nerve stimulation-induced NE release from 1.05 nM (SD 0.85) to 0.73 nM (SD 0.73) (P < 0.05, n = 6) and ACh release from 10.2 nM (SD 5.1) to 7.1 nM (SD 3.4) (P < 0.05, n = 5). In conclusion, hypothermia attenuated the ischemia-induced NE and ACh releases in the ischemic region. Moreover, hypothermia also attenuated the nerve stimulation-induced NE and ACh releases. The Bezold-Jarisch reflex evoked by the left anterior descending coronary artery occlusion, however, did not appear to be affected under hypothermia.  相似文献   

2.
To elucidate the pathophysiological roles of vagosympathetic interactions in ischemia-induced myocardial norepinephrine (NE) and acetylcholine (ACh) release, we measured myocardial interstitial NE and ACh levels in response to a left anterior descending coronary occlusion in the following groups of anesthetized cats: intact autonomic innervation (INT, n = 7); vagotomy (VX, n = 6); local administration of atropine (Atro, n = 6); transection of the stellate ganglia (TSG, n = 5); local administration of phentolamine (Phen, n = 6); and combined vagotomy and transection of the stellate ganglia (VX+TSG, n = 5). The maximum NE release was enhanced in the VX group (141 +/- 30 nmol/l, means +/- SE, P < 0.05) compared with the INT group (61 +/- 12 nmol/l). Neither the Atro (50 +/- 24 nmol/l) nor VX+TSG groups (84 +/- 25 nmol/l) showed enhanced NE release. The maximum ACh release was unaltered in the TSG and Phen groups compared with the INT group (19 +/- 4, 18 +/- 4, and 13 +/- 3 nmol/l, respectively). These findings indicate that the cardiac vagal afferent but not efferent activity reduced the ischemia-induced myocardial NE release. In contrast, the cardiac sympathetic afferent and efferent activities played little role in the ischemia-induced myocardial ACh release.  相似文献   

3.
Although ANG II exerts a variety of effects on the cardiovascular system, its effects on the peripheral parasympathetic neurotransmission have only been evaluated by changes in heart rate (an effect on the sinus node). To elucidate the effect of ANG II on the parasympathetic neurotransmission in the left ventricle, we measured myocardial interstitial ACh release in response to vagal stimulation (1 ms, 10 V, 20 Hz) using cardiac microdialysis in anesthetized cats. In a control group (n = 6), vagal stimulation increased the ACh level from 0.85 +/- 0.03 to 10.7 +/- 1.0 (SE) nM. Intravenous administration of ANG II at 10 microg x kg(-1) x h(-1) suppressed the stimulation-induced ACh release to 7.5 +/- 0.6 nM (P < 0.01). In a group with pretreatment of intravenous ANG II receptor subtype 1 (AT(1) receptor) blocker losartan (10 mg/kg, n = 6), ANG II was unable to inhibit the stimulation-induced ACh release (8.6 +/- 1.5 vs. 8.4 +/- 1.7 nM). In contrast, in a group with local administration of losartan (10 mM, n = 6) through the dialysis probe, ANG II inhibited the stimulation-induced ACh release (8.0 +/- 0.8 vs. 5.8 +/- 1.0 nM, P < 0.05). In conclusion, intravenous ANG II significantly inhibited the parasympathetic neurotransmission through AT(1) receptors. The failure of local losartan administration to nullify the inhibitory effect of ANG II on the stimulation-induced ACh release indicates that the site of this inhibitory action is likely at parasympathetic ganglia rather than at postganglionic vagal nerve terminals.  相似文献   

4.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

5.
Acute ischemia has been reported to impair sympathetic outflow distal to the ischemic area in various organs, whereas relatively little is known about this phenomenon in skeletal muscle. We examined how acute ischemia affects norepinephrine (NE) release at skeletal muscle sympathetic nerve endings. We implanted a dialysis probe into the adductor muscle in anesthetized rabbits and measured dialysate NE levels as an index of skeletal muscle interstitial NE levels. Regional ischemia was introduced by microsphere injection and ligation of the common iliac artery. The time courses of dialysate NE levels were examined during prolonged ischemia. Ischemia induced a decrease in the dialysate NE level (from 19+/-4 to 2.0+/-0 pg/ml, mean+/-S.E.), and then a progressive increase in the dialysate NE level. The increment in the dialysate NE level was examined with local administration of desipramine (DMI, a membrane NE transport inhibitor), omega-conotoxin GVIA (CTX, an N-type Ca(2+) channel blocker), or TMB-8 (an intracellular Ca(2+) antagonist). At 4h ischemia, the increment in the dialysate NE level (vehicle group, 143+/-30 pg/ml) was suppressed by TMB-8 (25+/-5 pg/ml) but not by DMI (128+/-10 pg/ml) or CTX (122+/-18 pg/ml). At 6h ischemia, the increment in the dialysate NE level was not suppressed by the pretreatment. Ischemia induced biphasic responses in the skeletal muscle. Initial reduction of NE release may be mediated by an impairment of axonal conduction and/or NE release function, while in the later phase, the skeletal muscle ischemia-induced NE release was partly attributable to exocytosis via intracellular Ca(2+) overload rather than opening of calcium channels or carrier mediated outward transport of NE.  相似文献   

6.
Despite the importance of vagal control over the ventricle, little is known regarding vagal efferent conduction and nerve terminal function in the postischemic myocardium. To elucidate postischemic changes in the cardiac vagal efferent neuronal function, we measured myocardial interstitial acetylcholine (ACh) levels by using in vivo cardiac microdialysis and examined the ACh responses to electrical stimulation of the vagi or local administration of ouabain in anesthetized cats. Sixty-minute occlusions of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion abolished electrical stimulation-induced ACh release (20.4 +/- 3.9 vs. 0.9 +/- 0.4 nmol/l; means +/- SE, P < 0.01). In different groups of animals, 60-min LAD occlusion followed by 60-min reperfusion decreased but did not completely abolish ouabain-induced release of ACh (9.2 +/- 1.8 vs. 3.9 +/- 0.7 nmol/l; P < 0.05). These results indicate that function of the vagal efferent axon was completely interrupted, whereas the local ACh release was partially suppressed in the postischemic myocardium. The postischemic disruption of vagal efferent neuronal function might exert deleterious effects on cardiac regulation.  相似文献   

7.
Vagal nerve stimulation has been suggested to ameliorate left ventricular (LV) remodeling in heart failure. However, it is not known whether and to what degree vagal nerve stimulation affects matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) in myocardium, which are known to play crucial roles in LV remodeling. We therefore investigated the effects of electrical stimulation of efferent vagal nerve on myocardial expression and activation of MMPs and TIMPs in a rabbit model of myocardial ischemia-reperfusion (I/R) injury. Anesthetized rabbits were subjected to 60 min of left coronary artery occlusion and 180 min of reperfusion with (I/R-VS, n = 8) or without vagal nerve stimulation (I/R, n = 7). Rabbits not subjected to coronary occlusion with (VS, n = 7) or without vagal stimulation (sham, n = 7) were used as controls. Total MMP-9 protein increased significantly after left coronary artery occlusion in I/R-VS and I/R to a similar degree compared with VS and sham values. Endogenous active MMP-9 protein level was significantly lower in I/R-VS compared with I/R. TIMP-1 mRNA expression was significantly increased in I/R-VS compared with the I/R, VS, and sham groups. TIMP-1 protein was significantly increased in I/R-VS and VS compared with the I/R and sham groups. Cardiac microdialysis technique demonstrated that topical perfusion of acetylcholine increased dialysate TIMP-1 protein level, which was suppressed by coperfusion of atropine. Immunohistochemistry demonstrated a strong expression of TIMP-1 protein in cardiomyocytes around the dialysis probe used to perfuse acetylcholine. In conclusion, in a rabbit model of myocardial I/R injury, vagal nerve stimulation induced TIMP-1 expression in cardiomyocytes and reduced active MMP-9.  相似文献   

8.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

9.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

10.
In the denervated mammalian heart a change in right atrial pressure will still alter heart rate (intrinsic rate response, IRR). We have examined the IRR in isolated right atria of the guinea-pig maintained in oxygenated Krebs-Henseleit solution at 37 degrees C, to compare with and extend studies in other species, and to determine whether the guinea-pig is a suitable model for electrophysiological studies of the IRR. Baseline diastolic transmural pressure was set at 2 mmHg. A 6-mmHg increase in right atrial pressure (RAP) caused an increase in atrial rate that reached a steady value of 15 min(-1) after 1-2 min. This response was enhanced by carbamylcholine and attenuated by isoprenaline. The influence of RAP on the rate response to vagal stimulation was examined. With RAP set at 8 mmHg, the reduction in atrial rate following vagal stimulation was 72+/-5% of that at 2 mmHg (n=6, mean+/-S.E., P<0.005). Continuous vagal stimulation produced a sustained bradycardia, and the effect of this bradycardia on the IRR was examined. When atrial rate was reduced 6% by vagal stimulation, the IRR was augmented to 202+/-21% of the control (n=6, P<0.005). This augmentation was larger (P<0.05) than that seen when atrial rate was reduced 8% by carbamylcholine (130+/-8% of control; n=7, P<0.05). Overall, the IRR in the guinea-pig is similar to that in the rabbit, and shows similar interactions with the autonomic nervous system.  相似文献   

11.
The release of neuropeptide Y like immunoreactivity (NPY-li) from the adrenal gland was studied in relation to the secretion of catecholamines (CA: NE, norepinephrine; E, epinephrine) during the left splanchnic nerve stimulation in thiopental-chloralose anesthetized dogs (n = 16). Plasma concentrations of NE, E, and NPY-li were determined in the left adrenal venous and aortic blood. Adrenal outputs of NPY-li, NE, and E were 2.4 +/- 0.4, 1.4 +/- 0.2, and 7.3 +/- 1.7 ng/min, under basal conditions, respectively. These values increased significantly (p less than 0.05; n = 8) in response to a continuous stepwise stimulation at frequencies of 1, 3, and 10 Hz given at 3-min intervals during 9 min, reaching a maximum output of 4.6 +/- 0.9 (NPY-li), 240.2 +/- 50.2 (NE), and 1412.5 +/- 309.7 ng/min (E) at a frequency of 10 Hz. Burst electrical stimulation at 40 Hz for 1 s at 10-s intervals for a period of 10 min produced similar increases (p less than 0.05) in the release of NPY-li (4.8 +/- 1.0 ng/min, n = 8), NE (283.5 +/- 144.3 ng/min, n = 8), and E (1133.5 +/- 430.6 ng/min, n = 8). Adrenal NPY-li output was significantly correlated with adrenal NE output (r = 0.606; n = 24; p less than 0.05) and adrenal E output (r = 0.640; n = 24; p less than 0.05) in dogs receiving the burst stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

13.
NO plays an important role in the compensatory increase in coronary flow conductance against myocardial ischemia, and NO bioavailability is impaired in various diseases. We tested the hypothesis that, when NO production is inhibited, vasoconstrictor signals from the ischemic myocardium are unmasked. We investigated the involvement of endothelin type A (ETA) receptors in the transduction of the constrictor signal. To detect coronary vasoactive signals derived from ischemic myocardium, we used a bioassay system in which an isolated rabbit coronary microvessel (detector vessel, DV) was placed on beating myocardium perfused by the left anterior descending coronary artery (LAD) of an anesthetized open-chest dog (n = 38). The DV was pressurized to 60 cmH2O throughout the experiment and observed with an intravital microscope equipped with a floating objective. After the intrinsic tone of the DV was established, vehicle (n = 7), Nomega-nitro-L-arginine (L-NNA, 100 micromol/l; n = 13), L-NNA + BQ-123 (a selective ETA receptor blocker, 1 micromol/l; n = 7), or BQ-123 alone (1 micromol/l; n = 7) was superfused onto the DV. Thereafter, the LAD of the beating heart was occluded. Coronary occlusion produced significant dilation of the DV by 10 +/- 4%. When L-NNA was applied, the DV significantly constricted by 12 +/- 5% in response to LAD occlusion, and BQ-123 abolished the vasoconstriction. Pretreatment with BQ-123 alone produced an enhancement of the ischemia-induced dilation. We conclude that ischemic myocardium releases transferable vasomotor signals that produce coronary microvascular constriction during the blockade of NO production and the constrictor signal is mediated by ETA receptors.  相似文献   

14.
Cardiac connexin 43 (Cx43) is involved in infarct propagation, and the uncoupling of Cx43-formed channels reduces infarct size. Cx43-formed channels open upon Cx43 dephosphorylation, and ischemic preconditioning (IP) prevents the ischemia-induced Cx43 dephosphorylation. In addition to the sarcolemma, Cx43 is also present in the cardiomyocyte mitochondria. We now examined the interaction of Cx43 with protein phosphatases PP1alpha, PP2Aalpha, and PP2Balpha and the role of such interaction for Cx43 phosphorylation in preconditioned myocardium. Infarct size (in %area at risk) in left ventricular anterior myocardium of G?ttinger minipigs subjected to 90 min of low-flow ischemia and 120 min of reperfusion was 23.1 +/- 2.7 [n = 7, nonpreconditioned (NIP) group] and was reduced by IP to 10.0 +/- 3.2 (n = 6, P < 0.05). Mitochondrial and gap junctional Cx43 dephosphorylation increased after 85 min of ischemia in NIP myocardium, whereas Cx43 phosphorylation was preserved with IP. PP2Aalpha and PP1alpha, but not PP2Balpha, were detected by Western blot analysis in the left ventricular myocardium. Cx43 coprecipitated with PP2Aalpha but not with PP1alpha. Although the total PP2Aalpha immunoreactivity (confocal laser scan) was increased to 154 +/- 24% and 194 +/- 13% of baseline (P < 0.05) after 85 min of ischemia in NIP and IP myocardium, respectively, the PP2A activities were similar between the groups. The amount of PP2Aalpha coimmunoprecipitated with Cx43 remained unchanged. Only PP2Aalpha coprecipitates with Cx43 in pig myocardium. This interaction is not affected by IP, suggesting that PP2Aalpha is not involved in the prevention of the ischemia-induced Cx43 dephosphorylation by IP.  相似文献   

15.
Hydrolysis, synthesis, and release of acetylcholine in the isolated heart   总被引:1,自引:0,他引:1  
The occurrence of unhydrolyzed acetylcholine (ACh) in the cardiac perfusate during vagal stimulation in the absence of cholinesterase inhibition has been demonstrated by several methods. Because some ACh was found unhydrolyzed in the extracellular space for several seconds after vagal stimulation (half-time of decay 2.5 s), it appears that the prolonged time course of the cardiac responses to bursts of vagal activity is determined by a slow rate of transmitter inactivation (diffusion plus hydrolysis) in addition to slowly operating postsynaptic mechanisms mediated by activation of the muscarinic receptor. The neuronal uptake of choline in isolated heart preparations was found to be Na+ dependent, sensitive to hemicholinium 3, and activated by vagal stimulation. Activation occurred after a delay of 1 or 2 min and slowly faded within 5 min after stimulation. Resting release of ACh was insensitive to extracellular Ca2+ and to muscarinic feedback inhibition, in contrast to the evoked transmitter release. Inasmuch as atropine increased ACh release by vagal and field stimulation to the same extent, muscarinic feedback inhibition is likely to occur at postganglionic parasympathetic neurons. Adrenergic agonists and propranolol did not significantly change the release of ACh.  相似文献   

16.
Ischemic preconditioning is known to protect the myocardium from ischemia-reperfusion injury. We examined the transmural release of bradykinin during myocardial ischemia and the influence of ischemic preconditioning on bradykinin release during subsequent myocardial ischemia. Myocardial ischemia was induced by occlusion of the left anterior descending coronary artery in anesthetized cats. Cardiac microdialysis was performed by implantation and perfusion of dialysis probes in the epicardium and endocardium. In eight animals, bradykinin release was greater in the endocardium than in the epicardium (14.4 +/- 2.8 vs. 7.3 +/- 1.7 ng/ml, P < 0.05) during 30 min of ischemia. In seven animals subjected to preconditioning, myocardial bradykinin release was potentiated significantly from 2.4 +/- 0.6 ng/ml during the control period to 23.1 +/- 2.5 ng/ml during 30 min of myocardial ischemia compared with the non-preconditioning group (from 2.7 +/- 0.6 to 13.4 +/- 1.9 ng/ml, P < 0.05, n = 6). Thus this study provides further evidence that transmural gradients of bradykinin are produced during ischemia. The results also suggest that ischemic preconditioning enhances bradykinin release in the myocardial interstitial fluid during subsequent ischemia, which is likely one of the mechanisms of cardioprotection of ischemic preconditioning.  相似文献   

17.
Interest is growing in the role of adenosine triphosphate (ATP) on P2 receptors during hypoxic/ischemic events in the brain. However, there is no direct evidence of an increase in extracellular ATP levels during cerebral ischemia in vivo. The aim of the present study was to evaluate ATP outflow from the rat striatum by the microdialysis technique associated with focal cerebral ischemia in vivo by intraluminal occlusion of the right middle cerebral artery (MCA). Between 1 and 4h after ischemia, rats showed a clear turning behavior contralateral to the ischemic side. Twenty-four hour after MCA occlusion, ischemic rats had definite neurological deficit and striatal and cortical damage. The ATP concentration (mean+/-S.E.M.) in the striatum of normoxic rats (n = 8) was 3.10+/-0.34 nM. During 220 min after MCA occlusion, the extracellular ATP levels significantly increased two-fold, being 5.90+/-0.61 nM (p < 0.01 versus normoxic level). ATP outflow showed a tendency to increase over time during the 220 min of ischemia. Since extracellular ATP is rapidly metabolized to adenosine, we also assessed ATP outflow in the presence of the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-adenosine diphosphate (AOPCP, 1 mM) directly perfused into the striatum. The ATP concentration in normoxic rats (n = 8) was increased three-fold in the presence of the ecto-5'-nucleotidase inhibitor (9.57+/-0.26 nM). During 220 min of ischemia, extracellular ATP levels significantly increased 1.3-fold in AOPCP-treated rats (12.62+/-0.65 nM, p < 0.01 versus normoxic level). The present study confirms that ATP is continuously released in the brain and demonstrates for the first time that ATP outflow increases during ischemia in vivo. These results confirm that ATP may be an important mediator in brain ischemia.  相似文献   

18.
Reversibility of Nimodipine Binding to Brain in Transient Cerebral Ischemia   总被引:2,自引:0,他引:2  
Using autoradiography, we have measured the in vivo binding of [3H]nimodipine to brain in a rat model of reversible cerebral ischemia. Ischemia was induced by simultaneous occlusion of the middle cerebral artery (MCA) and ipsilateral common carotid artery by microaneurysm clips. Rats were studied after 15 min of ischemia (ischemic group) or after 45 min of reperfusion following 15 min of ischemia (reperfused group). Regional cerebral blood flow (CBF) was determined autoradiographically using [14C]iodoantipyrine in both ischemic (n = 6) and reperfused (n = 6) groups. During ischemia blood flow in the territory of the MCA was depressed and recovered to normal only in the distal territory of the MCA following reperfusion. [3H]Nimodipine binding in the ischemic group (n = 12) was elevated in ischemic brain regions and declined significantly (p < 0.01) in these regions in the reperfused group (n = 11). The ratio of the volume of cortex showing increased binding to the total volume of the forebrain was 0.113 +/- 0.025 (mean +/- SD) in the ischemic group and declined to 0.080 +/- 0.027 following reperfusion (p < 0.005). In general, infarct was only observed in regions showing persistent elevation of nimodipine binding following reperfusion as determined by histology performed in a separate group of rats (n = 8) after 24 h of reperfusion. We conclude that increased nimodipine binding to ischemic tissue is initially reversible with prompt reestablishment of CBF and is a sensitive indicator of early and reversible ischemia-induced cerebral dysfunction.  相似文献   

19.
This study determined whether insulin at pre- (fasting) and post-prandial concentrations increases coronary blood flow and improves cardiac function after acute ischemia during a situation of myocardial stunning. The experiments were performed using an isolated, erythrocyte perfused, working rat heart model. To the perfusate we added erythrocytes and 1.5% bovine serum albumin to improve clinical relevance. The following protocol was used: 8 min baseline performance assessment, 10 min pre-ischemic treatment, 12 min global ischemia, 20 min post-ischemic treatment and 8 min recovery assessment. Vehicle, 10 mIU l(-1) and 100 mIU l(-1) human insulin were tested (all n=6). No significant vasodilator response to insulin was observed either pre- or post-ischemically. After the 12-min ischemic insult, cardiac function returned dose-dependently to pre-ischemic values (function loss with 100 mIU l(-1) insulin: -0.2+/-0.4% vs. vehicle: 10.7+/-0.8%). This study clearly shows that in our clinically relevant model of moderate ischemia (stunning), insulin is highly cardioprotective at physiological concentrations. This may be explained primarily by higher glucose uptake, improving the myocardial energetic state during ischemia. Therefore, insulin should be considered for use when the myocardium is at acute risk for ischemic incidents.  相似文献   

20.
We developed a method of causing strong ischemic insult only in vulnerable nerve cells, such as hippocampal cells, without causing hemiplegia or difficulty in moving, by repeating cerebral ischemia for a brief time with a short interval periods. The rats subjected to 10 min of cerebral ischemia exhibited no impairment of spatial cognition at the test trial 7 days after final reperfusion. However, when the 10 min ischemia was repeated twice with a 1 hr interval, the rats exhibited a significant decrease in number of correct choices and increase in number of errors. Three times of repeated cerebral ischemia also induced a significant decrease in the number of correct choices and increase in the number of errors, but there were some rats showing motor difficulty. Cell death was typically observed in the CA1 layer of the hippocampus of rats subjected twice to 10 min of cerebral ischemia. Hippocampal and cortical acetylcholine (ACh) release weas transiently increased during the first and second 10 minutes of ischemia and normalized immediately after recirculation; thereafter, ACh release from these areas gradually decreased and showed a significantly low level at 7 days after recirculation. These results suggest that the repeated cerebral ischemia-induced impairment of spatial memory may be due to the dysfunction of hippocampal and cortical ACh systems and hippocampal cell death. The repeated cerebral ischemia model which produces cell death and ACh dysfunction in the hippocampus is thought to be useful for evaluating new drugs for the treatment of cerebrovascular dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号