首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In an attempt to improve our understanding of the transfer process of organic mercury (mainly methyl mercury) from the prey to the consumer, the uptake of mercury in edible muscle of shrimps, Pandalus borealis, from contaminated mussels used as food supplies was studied. Shrimps bioaccumulated rapidly mercury in their abdominal muscle when submitted to a highly contaminated diet (6 μg Hg g?1) but biomagnification was not observed and Hg concentration in shrimps never exceeded 1.8 μg g?1. The assimilation efficiency during the uptake period was estimated to about 42% When shrimps received moderately contaminated diet (2.5–2.9 μg Hg g?1), a two-stage bioaccumulation process was observed in which mercury concentration began to increase in shrimp muscle after 15 days of contaminated diet and at the end of the experiment it seemed to level off. This process can be represented by a two-compartment conceptual model in which mercury rs first eliminated and/or accumulated in the compartment 1 (digestive organs) and then transferred to the compartment 2 (abdominal muscle) following a mechanism and under conditions not yet clearly understood. The use of selenium biologically incorporated into the diet had no apparent effect on the uptake of mercury  相似文献   

2.
Abstract

Mature starfish Leptasterias polaris were exposed to labelled mercury (II) species via food contaminated at a level of 5.0 μg g?1. The distribution of inorganic Hg and methylmercury (MeHg) in starfish organs and tissues and the effect of a series of complexing agents on mercury translocation between organs and tissues were examined over a 24-h period. The distribution of mercury species in coelomic fluid components, ammonia excretion rate and mercury excretion were also measured. The highest concentrations were observed in the stomach (the source organ) and in pyloric caecum (up to 0.32 μg g?1 wet weight for inorganic Hg and 0.22 μg g?1 for MeHg). Concentrations of MeHg in gonads ranged from ≤ 0.01 to 0.08 μg g?1 whereas concentrations of inorganic Hg never exceeded 0.06 μg g?1. In all studied cases, mercury concentration was very low the coelomic fluid (≤ 0.01 μg g?1). The short-term distribution of Hg species via contaminated food in starfish L. polaris seems to be controlled by the haemal system, a primitive circulatory system responsible for the transport of soluble nutrients from the digestive track towards organs and tissues, but a possible role of the coelomic fluid can not be excluded. Very low Hg contents were observed in gonads and in the coelomic fluid which fills the general cavity. Except for mercaptoethanol (merOH) and dimercaptosuccinic acid (DMSA), the addition of complexing agents to the food had little effect on the distribution of Hg species. MerOH appeared as an efficient carrier for methylmercury transport through the digestive system. DMSA enhanced the translocation of inorganic mercury from stomach and pyloric caecum toward external tissues and markedly increased its excretion.  相似文献   

3.
ABSTRACT

Diel rhythm in activity of antioxidant enzymes, as well as contents of glutathione and lipid peroxides, has been intensively investigated in Mammalia and Aves, however, the relevant studies about fish are few. In the present study, we examined variation in contents of cortisol, glucose and lactic acid in plasma of black sea bass Centropristis striata under natural photoperiod during a 24-h period. In addition, variation in activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and glutathione reductase (GR) as well as contents of total glutathione (T-GSH), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in liver and plasma of the fish were also determined. The plasma and liver samples were collected from the test fish at 3 h intervals during a 24-h cycle, with the first sampling time set at 03:00 h. No significant differences were found in glucose content and activities of GSH-PX and GR in plasma, as well as activities of SOD and GR in liver among different sampling times. In contrast, apparent variation was observed in contents of cortisol, lactic acid and MDA in plasma, activities of SOD and CAT in plasma, contents of MDA, T-GSH, GSH and GSSG in liver and activities of GSH-PX and CAT in liver between different sampling times. Moreover, contents of cortisol and MDA in plasma, SOD activity in plasma, and contents of MDA, GSH and GSSG in liver exhibited circadian rhythm, and their acrophases occurred at 06:08 h, 18:38 h, 15:09 h, 09:57 h, 23:36 h and 07:30 h, respectively. The present study indicates that some physiological parameters relating to stress response, such as cortisol and MDA contents in plasma, MDA, GSH and GSSG contents in liver and SOD activity in plasma changed at different time throughout a day in black sea bass. Therefore, caution should be taken when evaluating stress response in fish with these physiological parameters measured at different times.  相似文献   

4.
Zinc, lead and mercury accumulation in the amphipod Hyalella azteca increases with increasing exposure to metals. During 10 week chronic toxicity tests, metal accumulated at the highest non-toxic/lowest toxic concentration was 126/136 µg Zn g–1, 7.1/16 µg Pb g–1 and 56/90 µg Hg g–1 dry weight. Concentrations of lead and mercyry in control animals were substantially lower (1.3 µg Pb g–1 and 0.4 µg Hg g–1), but concentrations of zinc in controls (74 µg g–1) were about one half those of the lowest toxic concentration. Copper was completely regulated. Accumulated copper concentrations after 10 weeks exposure to all waterborne copper concentrations resulting in less than 100% mortality were not significantly different from controls (79 µg g–1). Lead and mercury concentrations in wild H. azteca should be useful indicators of potential toxicity. Zinc accumulation may also be a useful indicator of zinc toxicity, but careful comparison with control or reference animals is necessary because of the small differences between toxic and control concentrations. Copper is not accumulated by H. azteca under chronic exposure conditions and body burdens of field animals cannot be used as an indicator of exposure or potential toxic effects. Short term exposures to copper, however, result in elevated copper concentrations in H. azteca, even at concentrations below those causing chronic toxicity. Short term bioaccumulation studies might, therefore, provide a useful indication of potential chronic copper toxicity.  相似文献   

5.
Domoic acid (DA), the toxin responsible for amnesic shellfish poisoning (ASP) can accumulate in king scallop Pecten maximus leading to extensive fishery closures. Approximately 59% of the total value of all fish and shellfish landed in the Isle of Man in 2004 comprised king scallop, hence the economy of the Manx marine sector is particularly susceptible to impacts from this biotoxin. Scallop from fishing grounds around the Isle of Man were sampled in October 2003, June 2004 and October 2004 to determine levels of inter-animal and spatial variability in DA concentration and factors that might influence toxin concentration such as scallop size and water depth. Mean DA concentrations in hepatopancreas ranged from 296.3 μg g−1 to below the detection limit, in gonad from 27.8 μg g−1 to below the limit of detection and in adductor muscle from 7.3 μg g−1 to below the limit of detection. High levels of inter-animal variability of DA concentration in hepatopancreas were recorded; CVs ranging from 16.1% to 70.0%. DA concentrations above 20 μg g−1 were recorded in gonads on all three sampling dates. Scallops from fishing grounds on the east of the Isle of Man were significantly less contaminated than those from the west and southwest. A significant positive correlation between DA concentration and shell length was recorded in some sites, but there was no relationship with water depth. The high inter-animal, spatial and seasonal variability in toxin concentration highlighted the importance of understanding field variability for the development of reliable sampling and management protocols.  相似文献   

6.
A survey of mercury (Hg) and selenium (Se) contents was performed in fish collected from lakes located in two National Parks of the northern patagonian Andean range. Two native species, catfish (Diplomystes viedmensis) and creole perch (Percichthys trucha), and three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis), were caught from lakes Nahuel Huapi, Moreno, Traful, Espejo Chico, and Guillelmo belonging to Nahuel Huapi National Park and from lakes Futalaufquen and Rivadavia, Los Alerces National Park. In lake Moreno, fish diet items were analyzed and rainbow trout grown in a farm. Hg and Se were measured in muscle and liver tissues by instrumental neutron activation analysis. The average concentrations in muscle of Hg for all species, ages, and lakes are between 0.4 to 1.0 μg g−1 dry weight (DW) with a few fish, mainly native, exceeding the United States Environmental Protection Agency health advisory for freshwater fish limited consumption, and from 0.8 to 1.5 μg g−1 DW for Se. Average concentrations in liver of Hg in all species range from 0.4 to 0.9 μg g−1 DW. Brown trout, the top predator in these lakes, showed the lowest average Hg burden in both tissues. Se concentrations in the liver of brown and rainbow trout, up to 279 μg g−1 DW, are higher than those expected for nearly pristine lakes, exceeding 20 μg g−1 DW, the threshold concentration associated with Se toxicity. These species show lower Hg contents in muscle, suggesting a possible detoxification of Hg by a Se-rich diet. Creole perch and velvet catfish livers have lower Se concentrations, with a narrower span of values (2.3 to 8.5 μg g−1 and 3.3 to 5.5 μg g−1 DW respectively).  相似文献   

7.
Acute effects of mercuric chloride (HgCl2) were evaluated on mice. Mice received a single dose of HgCl2 (4.6 mg/kg, subcutaneously) for three consecutive days. Thirty minutes after the last injection with HgCl2, mice received one single injection of 2,3-dimercapto-1-propanesulfonic acid (DMPS) or N-acetylcysteine (NAC) or diphenyl diselenide (PhSe)2. DMPS, NAC and (PhSe)2 were utilized as therapy against mercury exposure. At 24 h after the last HgCl2 injection, blood, liver and kidney samples were collected. δ-Aminolevulinate dehydratase (δ-ALA-D) and Na+, K-+ ATPase activities, thiobarbituric acid-reactive substances (TBARS), non-protein thiols (NPSH) and ascorbic acid concentrations were evaluated. Plasma aspartate (AST) and alanine (ALT) aminotransferase activities, as well as urea and creatinine levels were determined. The group of mice exposed to Hg + (PhSe)2 presented 100% of lethality. Exposure with HgCl2 caused a decrease on the body weight gain and treatments did not modify this parameter. δ-ALA-D, AST and ALT activities, TBARS, ascorbic acid levels and NPSH (hepatic and erythrocytic) levels were not changed after HgCl2 exposure. HgCl2 caused an increase in renal NPSH content and therapies did not modify these levels. Mice treated with (PhSe)2, Hg + NAC and Hg + DMPS presented a reduction in plasma NPSH levels. Creatinine and urea levels were increased in mice exposed to Hg + NAC, while Hg + DMPS group presented an increase only in urea level. Na+, K-+ ATPase activity was inhibited in mice exposed to Hg + DMPS and Hg + NAC. In conclusion, therapies with (PhSe)2, DMPS and NAC following mercury exposure must be better studied because the formation of more toxic complexes with mercury, which can mainly damage renal tissue.  相似文献   

8.
Biochemical and physiological responses of walleye (Sander vitreus) and perch (Perca flavescens) were studied in four Canadian boreal forest lakes representing a mercury (Hg) exposure gradient. The aim of this study was to assess the effects of Hg and methylmercury (MeHg) on the general physiological condition of fish as well as to gauge the relationship between MeHg and the glutathione (GSH) system in metal-contaminated and reference sites using a series of biomarkers. Walleye from Lake Malartic had the highest liver MeHg concentrations, exhibited lower hepatosomatic indices (HSI) and lower glutathione S-transferase (GST) activity. HSI was negatively related to liver total Hg concentrations in walleye (R2=0.33, n=108, P<0.0001). Glutathione reductase (GR) and GST activity for walleye from Lake Malartic were related to HSI (R2=0.38, n=25, P=0.0010; R2=0.46, n=27, P<0.0001, respectively). In Lake Desjardins-East, where perch had the highest liver MeHg concentrations, glutathione peroxidase selenium dependent activity (GSH-Px SD) and GST activity were negatively related to liver MeHg concentrations (R2=0.39, n=21, P=0.0026; R2=0.22, n=21, P=0.0298, respectively). This study suggests that Hg may induce adverse effects on the physiology and cellular metabolism of walleye and perch at environmentally relevant concentrations.  相似文献   

9.
The study present evaluated the levels of mercury (Hg) and methylmercury (MeHg) in hair samples of people from Barreiras community, riverside inhabitants of the Tapajós River (Pará, Brazil), an area impacted by clandestine gold mining, as well as we analyzed the levels of Hg and Se (selenium) in nine fish species (carnivores and non-carnivorous) from the Tapajós River, which stand out as the main species consumed by riverside inhabitants, to evaluate a relationship between frequency of fish consumption and Hg concentration, and also to evaluate possible mechanisms of fish protection (or non-protection) to Hg exposure by Se. Furthermore we analyze the water quality to evaluate the environmental trophic state, fact responsible by creating conditions that can potentiate the effects of toxic mercury. Concentrations of Hg and MeHg were analyzed in hair samples of 141 volunteers in different age band. Of those, 84.40% of samples present values above the threshold for biological tolerance, which is 6.00 μg g−1 of total Hg in hair. Total Hg, in men there was a variation of 2.07–24.93 μg g−1, while for women the variation was 4.84–27.02 μg g−1. Consequently, the level of MeHg in men presented a variation of 1.49–19.57 μg g−1, with an average of 11.68 μg g−1, while with women the variation was from 3.73 to 22.35 μg g−1, with an average of 10.38 μg g−1. In fish species, Hg concentrations in carnivorous species had an average of 0.66 μg g−1, higher than that permitted by current legislation, ranging from 0.30 to 0.98 μg g−1, while the non-carnivorous species have values below the recommended by the legislation averaging 0.09 μg g−1, ranging between 0.02 and 0.44 μg g−1. For Se in fish, show that among carnivores, the contents of Se ranged between 0.18 and 0.54 μg g−1 with a mean of 0.34 μg g−1, while for non-carnivores these values were of the order of 0.16–0.56 μg g−1, with an average of 0.32 μg g−1. In surface water quality variables at the sampling points all showed values in accordance with the range established by current legislation. In this regard, the results provided by this study, while not conclusive, are strong indicators that despite not having been shown the relationship between the concentration of mercury in hair and feeding habits along the Tapajós River basin communities showed that a plausible correlation exists between levels of mercury and selenium in fish. This fact may serve as a subsidy to research human health, because in the Amazon, there is still a lot to examine with regards to the full understanding of the Se cycle.  相似文献   

10.
In this study, concentration of mercury was determined in the trophic levels of benthic, benthopelagic, pelagic fish species, and river birds from Arvand River, located in the Khuzestan province in the lowlands of southwestern Iran at the head of the Persian Gulf. The order of mercury concentrations in tissues of the fish species was as follows: liver>gill>muscle and in tissues of the kingfisher species was as follows: feather>liver>kidney>muscle. Therefore, liver in fish and feather in kingfisher exhibited higher mercury concentration than the other tissues. There was a positive correlation between mercury concentrations in fish and kingfisher species with size of its food items. We expected to see higher mercury levels in tissues of female species because they are larger and can eat larger food items. The results of this study show that the highest mean mercury level were found in the kingfisher (Anas crecca), followed by benthic (Epinephelus diacanthus), benthopelagic (Chanos chanos), and pelagic fish (Strongylura strongylura). Mean value of mercury in fish species, S. strongylura were (0.61 μg g?1 dry weight), C. chanos (0.45 μg g?1 dry weight), E. diacanthus (0.87 μg g?1 dry weight), and in kingfisher species A. crecca was (2.64 μg g?1 dry weight). Significant correlation between mercury concentration in fish and kingfisher may be related to high variability of mercury in the fish.  相似文献   

11.
Twenty-nine bacterial isolates representing eight genera from the gastrointestinal tracts of feral brook trout Salvelinus fontinalis (Mitchell) demonstrated multiple maximal antibiotic resistances and concomitant broad-spectrum mercury (Hg) resistance. Equivalent viable plate counts on tryptic soy agar supplemented with either 0 or 25?μM HgCl2 verified the ubiquity of mercury resistance in this microbial environment. Mercury levels in lake water samples measured 1.5?ng?L?1; mercury concentrations in fish filets ranged from 81.8 to 1,080?ng?g?1 and correlated with fish length. The presence of similar antibiotic and Hg resistance patterns in multiple genera of gastrointestinal microflora supports a growing body of research that multiple selective genes can be transferred horizontally in the presence of an unrelated individual selective pressure. We present data that bioaccumulation of non-point source Hg pollution could be a selective pressure to accumulate both antibiotic and Hg resistant bacteria.  相似文献   

12.
Hydroelectric reservoirs can stratify, producing favorable conditions for mercury methylation in the hypolimnion. The methylmercury (MeHg) can be exported downstream, increasing its bioavailability below the dam. Our objective was to assess the mercury levels in plankton, suspended particulate matter (SPM) and fish collected upstream (UP) and downstream (DW) from the Reservatório de Samuel dam, an Amazonian reservoir that stratifies during half of the year. Mercury concentrations in both SPM and plankton were similar between the two sites, which could indicate there are no conditions favoring methylation at the moment of sampling (absence of stratification). Almost all mercury found in the muscle of fishes was in organic form, and differences of mercury levels between sites were dependent on the fishes trophic level. Herbivores showed similar mean organic mercury levels (UP = 117 μg g?1; DW = 120 μg g?1; n = 12), whereas omnivores (UP = 142 μg g?1; DW = 534 μg g?1; n = 27) and carnivores (UP = 545 μg g?1; DW = 1,366 μg g?1; n = 69) showed significantly higher values below the dam. The absence of a reservoir effect in herbivores is expected, since they feed on grassy vegetation, near the riverbanks, which is not much influenced by mercury in aquatic systems. On the other hand, the higher mercury levels below the dam observed for omnivores and carnivores suggest a possible influence of the reservoir since they feed on items that could be contaminated by MeHg exported from upstream. The results highlight the necessity of assessing areas downstream of reservoirs.  相似文献   

13.
The potential of three estuarine macroalgae (Ulvarotundata, Enteromorpa intestinalis andGracilaria gracilis) as biofilters for phosphate ineffluents of a sea bass (Dicentrarchus labrax) cultivationtank was studied. These seaweeds thrive in Cádiz Bay and were alsoselected because of their economic potential, so that environmental andeconomicadvantages may be achieved by future integrated aquaculture practices in thelocal fish farms. The study was designed to investigate the functioning of Pnutrition of the selected species. Maximum velocity of phosphate uptake (2.86mol PO4 g–1 dry wth–1) was found in U. rotundata.This species also showed the highest affinity for this nutrient. At low flowrates (< 2 volumes d–1), the three species efficientlyfiltered the phosphate dissolved in the waste water, with a minimum efficiencyof 60.7% in U. rotundata. Net phosphate uptake rate wassignificantly affected by the water flow, being greatest at the highest rateassayed (2 volumes d–1). The marked decrease in tissue P shownby the three species during a flow-through experiment suggested that growth wasP limited. However, due to the increase in biomass, total P biomass increasedinthe cultures. A significant correlation was found between growth rates and thenet P biomass gained in the cultures. A three-stage design under low water flow(0.5 volumes d–1) showed that the highest growth rates (up to0.14 d–1) and integrated phosphate uptake rates(up to 5.8 mol PO4 3– g–1dry wt d–1) were found in E.intestinalis in the first stage, with decreasing rates in thefollowing ones. As a result, phosphate become limiting and low increments oreven losses of total P biomass in these stages were found suggesting thatphosphate was excreted from the algae. The results show the potential abilityofthe three species to reduce substantially, at low water flow, the phosphateconcentration in waste waters from a D. labrax cultivationtank, and thus the quality of effluents from intensive aquaculture practices.  相似文献   

14.
An account is given of the use of Enteromorpha to monitor zinc, cadmium, mercury and lead pollution in six estuaries and the British North Sea coast. The ranges for each element were: Zn, 19–437 µg g–1; µg g–1 Cd, 0.07–4.8 µg g–1; Hg, 0.02–0.23 µg g–1. It is suggested that tissue analysis of Enteromorpha is one of the most useful biological techniques available in estuaries for pin-pointing aqueous (as opposed to sediment) metal contamination, and also for providing data suitable for world-wide comparisons. Provisional values are given for concentrations corresponding to moderate and high pollution.Deceased  相似文献   

15.
Mercury biomagnifies in aquatic foodwebs in freshwater lakes, and common loons (Gavia immer) breeding in eastern Canada can be exposed to reproductively toxic concentrations of mercury in their fish prey. We assessed the bioaccumulation and biomagnification of mercury in juvenile and adult common loons, and their preferred prey: yellow perch (Perca flavescens) in Kejimkujik National Park (KNP), Nova Scotia by measuring mercury levels and stable isotope ratios in tissues. Total mercury levels and stable-carbon (δ13C) and nitrogen isotope ratios (δ15N) were determined in composite whole-fish samples from lakes in KNP and blood samples from juvenile and adult loons captured on lakes in KNP and southern New Brunswick. Geometric mean mercury concentrations were 0.15 and 0.38 μg/g (wet wt.) in small (9-cm fork length) and large (17-cm fork length) yellow perch, and were 0.43 and 2.7 μg/g (wet wt.) in blood of juvenile and adult common loons, respectively. Mercury concentrations in perch and loons were positively associated with body mass and δ15N values. Juvenile loons and large yellow perch had similar mercury levels and δ15N values, indicating similar trophic status despite their 22-fold difference in body mass. Mercury concentrations were higher in yellow perch and common loons in acidic lakes. Our findings highlight the importance of both chemical and ecological factors in understanding mercury biomagnification in lakes and associated risks to fish-eating wildlife. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
The impoundment of reservoirs temporarily increases the methylation of mercury bound to flooded soils and vegetation and the transfer of methylmercury (MeHg) to fish. MeHg levels in various fish species of hydroelectric reservoirs located in the James Bay territory increased by factors of 3 to 7, then gradually declined toward initial concentrations 10 to 20 years after flooding, depending on reservoir characteristics. The potential risk of increased MeHg exposure for recreational anglers who consume fish from these reservoirs had not been assessed previously. A less invasive method than systematic measurement of Hg levels in hair was developed to determine MeHg exposure of recreational anglers. A fish consumption questionnaire-based approach was combined with a toxicokinetic model to estimate the corresponding hair MeHg concentrations. The results were compared with actual analytical determinations of hair Hg levels for the 94 recreational anglers recruited for the study. The values predicted by the model based on self-reporting consumption overestimated actual hair Hg levels by an average factor greater than 6. The mean hair level predicted for the most recent period (September-October) was 23.3?µg.g?1 compared to 3.6 µg.g?1 for the measured value. Although the questionnaire protocol may certainly be improved to increase the precision of estimations, direct hair Hg measurement remains the more effective means to assess Hg exposure.  相似文献   

17.
1. The subcellular distribution of mercury and possible presence of Hg binding proteins of low molecular weight were investigated by ultracentrifugation and gel filtration in liver and muscle of the flat fish Citharus linguatula and Lepidorhombus boscii from the northern Tyrrhenian sea, heavily contaminated by the metal.2. For both tissues, Hg contents were higher in the pellet than in the supernatant.3. In the eluate of supernatant from Sephadex G-75 of both tissues, Hg was mainly bound to high molecular weight ligands.4. Differently from the muscle eluate, that from liver also contained a consistent amount of Hg bound to low molecular weight ligands.  相似文献   

18.
Synopsis Arsenic persists in Chautauqua Lake, New York waters 13 years after cessation of herbicide (sodium arsenite) application and continues to cycle within the lake. Arsenic concentrations in lake water ranged from 22.4–114.81 g l–1, = 49.0 ag l–1. Well water samples generally contained less than 10 g l–1 arsenic. Arsenic concentrations in lake water exceeded U.S. Public Health Service recommended maximum concentrations (10 g l–1) and many samples exceeded the maximum permissible limit (50 g l–1). Fish accumulated arsenic from water but did not magnify it. Fish to water arsenic ratios ranged from 0.4–41.6. Black crappie (Pomoxis nigromaculatus) contained the highest arsenic concentrations (0.14–2.04 g g–1 ), X = 0.7 g g–1) while perch (Perca flavescens), muskellunge (Esox masquinongy) and largemouth bass (Micropterus salmoides) contained the lowest concentrations (0.02–0.13 g g–1). Arsenic concentrations in fish do not appear to pose a health hazard for human consumers.  相似文献   

19.
Yellow perch Perca flavescens were collected from a contaminated site and a reference site in the St. Lawrence River, Quebec, Canada. Fish were assessed for oxidative stress (lipid peroxidation and reduced glutathione levels) and parasitism by the nematode Raphidascaris acus and metacercariae of the digenean Apophallus brevis. Lipid peroxidation is not only considered a measure of oxidative stress, but of stress in general, and thus serves as an indicator of fish health. Fish from the contaminated site exhibited higher levels of lipid peroxidation than those from the reference site, independent of parasitic infections. However, fish infected with R. acus at the contaminated site tended to have higher levels of lipid peroxidation than uninfected fish at the same site, whereas no difference was observed between infected and uninfected fish at the reference site. Yellow perch infected with > 10 metacercariae of A. brevis expressed higher levels of lipid peroxidation than those infected with < 10 metacercariae at both the contaminated and the reference sites. No differences were found in levels of reduced glutathione in liver or muscle in relation to site or either parasite species. Results support the use of lipid peroxidation as a biomarker of water contamination. They further suggest that lipid peroxidation may be used as a biomarker of pathological effects caused by parasitism. Most importantly, results demonstrate that contaminants and parasites occurring together exacerbate oxidative stress in fish, suggesting that parasitized fish in polluted environments are in a poorer state of health than uninfected fish.  相似文献   

20.
Total Hg concentrations were determined in muscle tissue of some fishes with different feeding habits (12 fish species) obtained from the main fishing locations along the Alexandria coast, a region particularly impacted by historic industrial Hg activities. Health risks to human via dietary intake of the edible portion of fish were assessed by the target hazard quotients (THQs). Mercury maximum concentrations corresponding to fish muscle tissue were found in L. mormyrus, S. rivulatus, and S. luridus (3.56, 2.94, and 1.35 μg g?1 wet weight, respectively). Thence most of these three species bass (75% of L. mormyrus, 76% of S. rivulatus, and 54% of S. luridus) were greater than a 0.47 μg g?1 threshold corresponding to a 1 meal per month consumption limit. M. cephalus, S. aurita, S. chrysotaenia, B. boops, and A. djedaba bass (100%) were less than a 0.12 μg g?1 threshold corresponding to a 4 meals per month safe consumption limit. Mercury THQs values, ranging from 0.11–1.76, were of concern. In particular, the health risk was mainly ascribed to consumption of S. rivulatus (1.72) and L. mormyrus (1.76), although also the TEQs values caused by consuming S. luridus (0.64) were rather high, being close to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号