首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional and structural comparison of PXR and CAR   总被引:4,自引:0,他引:4  
The nuclear receptors pregnane X receptor (PXR, NR1I2) and constitutive active receptor (CAR, NR1I3) have both been proposed to function as xenosensors, but the details of their respective physiological roles are still being elucidated. We have contrasted these two receptors in a variety of experiments including gene expression assays, cell-based ligand profiling assays, and crystallographic/structural modeling analyses. These data highlight key differences between PXR and CAR.  相似文献   

2.
3.
4.
Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR), constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN) alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.  相似文献   

5.
The nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR), are important in maintaining bile acid homeostasis. Deletion of both FXR and PXR in vivo by cross-breeding B6;129-Fxrtm1Gonz (FXR-null) and B6;129-Pxrtm1Glaxo-Wellcome (PXR-null) mice revealed a more severe disruption of bile acid, cholesterol, and lipid homeostasis in B6;129-Fxrtm1Gonz Pxrtm1Glaxo-Wellcome (FXR-PXR double null or FPXR-null) mice fed a 1% cholic acid (CA) diet. Hepatic expression of the constitutive androstane receptor (CAR) and its target genes was induced in FXR- and FPXR-null mice fed the CA diet. To test whether up-regulation of CAR represents a means of protection against bile acid toxicity to compensate for the loss of FXR and PXR, animals were pretreated with CAR activators, phenobarbital or 1,4-bis[2-(3,5-dichlorpyridyloxy)]benzene (TCPOBOP), followed by the CA diet. A role for CAR in protection against bile acid toxicity was confirmed by a marked reduction of serum bile acid and bilirubin concentrations, with an elevation of the expression of the hepatic genes involved in bile acid and/or bilirubin metabolism and excretion (CYP2B, CYP3A, MRP2, MRP3, UGT1A, and glutathione S-transferase alpha), following pretreatment with phenobarbital or TCPOBOP. In summary, the current study demonstrates a critical and combined role of FXR and PXR in maintaining not only bile acid but also cholesterol and lipid homeostasis in vivo. Furthermore, FXR, PXR, and CAR protect against hepatic bile acid toxicity in a complementary manner, suggesting that they serve as redundant but distinct layers of defense to prevent overt hepatic damage by bile acids during cholestasis.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339-345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity.  相似文献   

14.
15.

Background

Phenobarbital (PB) is the most well-known among numerous non-genotoxic carcinogens that cause the development of hepatocellular carcinoma (HCC). PB activates nuclear xenobiotic receptor Constitutive Active/Androstane Receptor (CAR; NR1I3) and this activation is shown to determine PB promotion of HCC in mice. The molecular mechanism of CAR-mediated tumor promotion, however, remains elusive at the present time. Here we have identified Growth Arrest and DNA Damage-inducible 45β (GADD45B) as a novel CAR target, through which CAR represses cell death.

Methodology/Principal Findings

PB activation of nuclear xenobiotic receptor CAR is found to induce the Gadd45b gene in mouse liver throughout the development of HCC as well as in liver tumors. Given the known function of GADD45B as a factor that represses Mitogen-activated protein Kinase Kinase 7 - c-Jun N-terminal Kinase (MKK7-JNK) pathway-mediated apoptosis, we have now demonstrated that CAR interacts with GADD45B to repress Tumor Necrosis Factor α ( TNFα)-induced JNK1 phosphorylation as well as cell death. Primary hepatocytes, prepared from Car+/+, Car−/−, Gadd45b+/+ and Gadd45b−/− mice, were treated with TNFα and Actinomycin D to induce phosphorylation of JNK1 and cell death. Co-treatment with the CAR activating ligand TCPOBOP (1,4 bis[2-(3,5-dichloropyridyloxy)]benzene) has resulted in repression of both phosphorylation and cell death in the primary hepatocytes from Car+/+ but not Car−/−mice. Repression by TCPOBOP was not observed in those prepared from Gadd45b−/− mice. In vitro protein-protein interaction and phosphorylation assays have revealed that CAR interacts with MKK7 and represses the MKK7-mediated phosphorylation of JNK1.

Conclusions/Significance

CAR can form a protein complex with GADD45B, through which CAR represses MKK7-mediated phosphorylation of JNK1. In addition to activating the Gadd45b gene, CAR may repress death of mouse primary hepatocytes by forming a GADD45B complex and repressing MKK7-mediated phosphorylation of JNK1. The present finding that CAR can repress cell death via its interaction with GADD45B provides an insight for further investigations into the CAR-regulated molecular mechanism by which PB promotes development of HCC.  相似文献   

16.
17.
18.
Two nuclear receptors of xenobiotic drugs, PXR and CAR, are central regulators of detoxification enzymes. New studies extend the role of these receptors to a natural detoxification process. They coordinate induction of proteins for storage, glucuronidation, and canalicular transport of bilirubin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号