首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess whether extrapancreatic effects of sulfonylureas in vivo are detectable in the absence of endogenous insulin secretion, insulin sensitivity was determined in six insulin-deficient type 1-diabetic subjects. Peripheral uptake and hepatic production of glucose and lipolysis were measured during hyperinsulinemia using the euglycemic clamp technique and 3-3H-glucose infusions twice, once during a period with glibornuride treatment (50 mg b.i.d.), and once without. Hepatic glucose production decreased in diabetic subjects during hyperinsulinemia (insulin infusion of 20 mU/m2 X min; plasma free insulin levels of 40 +/- 4 mU/l) from 2.9 +/- 0.6 mg/kg min to 0.2 +/- 0.1 mg/kg X min after 120 min, and plasma free fatty acid (FFA) concentrations decreased from 1.33 +/- 0.29 to 0.38 +/- 0.08 mmol/l. Hepatic production, peripheral uptake of glucose and plasma FFA concentrations before and during hyperinsulinemia were not influenced by pretreatment with glibornuride. Compared to 8 non-diabetic subjects, type 1-diabetics demonstrated a diminished effect of hyperinsulinemia on peripheral glucose clearance (2.4 +/- 0.04 vs 4.2 +/- 0.5 ml/kg X min, P less than 0.01), whereas hepatic glucose production and plasma FFA levels were similarly suppressed by insulin. The data indicate that sulfonylurea treatment did not improve the diminished insulin sensitivity of peripheral glucose clearance in type 1-diabetic subjects; insulin action on hepatic glucose production and lipolysis was unimpaired in diabetics and remained uninfluenced by glibornuride. Thus, extrapancreatic effects of sulfonylureas in vivo are dependent on the presence of functioning beta-cells.  相似文献   

2.
This study was undertaken to determine the factors involved in the development of insulin-sensitivity at weaning. Glucose kinetics were studied in suckling rats and in rats weaned on to a high-carbohydrate (HC) or a high-fat (HF) diet, in the basal state and during euglycaemic-hyperinsulinaemic-clamp studies. These studies were coupled with the 2-deoxyglucose technique, allowing a measure of glucose utilization by individual tissues. In the basal state, the glycaemia was higher in HF-weaned rats (124 +/- 4 mg/dl) than in suckling (109 +/- 1 mg/dl) and HC-weaned rats (101 +/- 3 mg/dl). Glucose turnover rates were similar in the three groups of animals (14 mg/min per kg). Nevertheless, basal metabolic glucose clearance rate was 20% lower in HF-weaned rats than in the other groups. During the euglycaemic-hyperinsulinaemic experiments, hepatic glucose production was suppressed by 90% in HC-weaned rats, whereas it remained at 40% of basal value in suckling and HF-weaned rats, indicating an insulin resistance of liver of these animals. Glucose clearance rate during the clamp was 18.3 +/- 0.9 ml/min per kg in suckling rats, whereas it was 35.3 +/- 1.2 ml/min per kg in HC-weaned rats and 27.8 +/- 1.1 ml/min per kg in HF-weaned rats, indicating an insulin resistance of glucose utilization in suckling, and to a lower extent, in HF-weaned rats. The deoxyglucose technique showed that peripheral insulin resistance was localized in muscles and white adipose tissue of suckling and HF-weaned rats. These results indicate that the switch from milk to a HC diet is an important determinant of the development of insulin-sensitivity at weaning in the rat.  相似文献   

3.
BACKGROUND AND AIMS: Smoking has repeatedly been associated with alterations in both insulin sensitivity and insulin absorption in type 2 diabetes, which should lead to differences in the pharmacokinetic (PK) and pharmacodynamic (PD) properties of regular insulin (RI). However, a direct comparison of the PK/PD-effects of RI has never been performed in these patients. Therefore, the aim of this exploratory study was to investigate the time-action profile of RI in a small group of smoking and matching non-smoking patients with type 2 diabetes using the euglycemic glucose clamp technique, which is seen as the gold standard for PD/PK investigations. MATERIAL AND METHODS: Nine smokers (more than 10 cigarettes per day) and nine non-smokers matched for gender, age, and BMI (without significant differences in HbA (1c), diabetes duration or blood pressure) were enrolled in the study. Patients' blood glucose was stabilized overnight at 7.2 mmol/l using a Biostator. Smokers were required to smoke one cigarette within ninety minutes prior to injection of 18 U RI s. c. in the morning. Glucose infusion rates (GIR) were registered for the subsequent 480 min. RESULTS: Injection of 18 U of RI resulted in significantly higher insulin concentrations in smokers compared to non-smokers, in particular in the later part of the experiment (Insulin-AUC (240-480) 10.5 +/- 2.3 (mean +/- SD) vs. 7.8 +/- 1.6 microU/ml/min, p < 0.05). This was also reflected in the PD results with a higher metabolic effect in smokers in the last four hours of the experiment (GIR-AUC (240-480) 0.9 +/- 0.4 vs. 0.6 +/- 0.3 g/kg, p < 0.05). Pharmacokinetic analyses revealed a trend towards a lower insulin clearance in smokers (1.1 +/- 0.2 vs. 1.4 +/- 0.4 l/min, p = 0.08). CONCLUSIONS: This pilot study conducted in a small group of patients with type 2 diabetes shows that regular insulin exhibits a longer-lasting rise in insulin concentrations and a higher metabolic effect four to eight hours after injection in smokers compared to non-smokers. This suggests that hyperinsulinemia in smoking type 2 diabetic patients is at least partly caused by a deterioration in insulin clearance.  相似文献   

4.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

5.
Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle training, 30 min/day, 6 days/wk for 10 wk at approximately 70% of maximal O(2) uptake) and untrained (UT) legs of healthy men (H) [n = 6, age 60 +/- 2 (SE) yr] and patients with Type 2 diabetes mellitus (DM) (n = 4, age 56 +/- 3 yr) during a hyperinsulinemic ( approximately 16,000 pmol/l), isoglycemic clamp with a final 30 min of superimposed two-legged exercise at 70% of individual maximal heart rate. With superimposed exercise, leg glucose extraction decreased (P < 0.05), and leg blood flow and leg glucose clearance increased (P < 0.05), compared with hyperinsulinemia alone. During exercise, leg blood flow was similar in both groups of subjects and between T and UT legs, whereas glucose extraction was always higher (P < 0.05) in T compared with UT legs (15.8 +/- 1.2 vs. 14.6 +/- 1.8 and 11.9 +/- 0.8 vs. 8.8 +/- 1.8% for H and DM, respectively) and leg glucose clearance was higher in T (H: 73 +/- 8, DM: 70 +/- 10 ml. min(-1). kg leg(-1)) compared with UT (H: 63 +/- 8, DM: 45 +/- 7 ml. min(-1). kg leg(-1)) but not different between groups (P > 0.05). From these results it can be concluded that, in both diabetic and healthy aged muscle, exercise adds to a maximally insulin-stimulated glucose clearance and that glucose extraction and clearance are both enhanced by training.  相似文献   

6.
Sixteen normal healthy volunteers were randomized into two groups, receiving either low doses insulin infusion clamp study (8mU/M2/min) or high dose (40mU/M2/min) to determine the diurnal insulin clearance and sensitivity. Each subject received the assigned dose of insulin clamp twice; one in the morning (0800-1000) and the other in the evening (1800-2000), each with a precedent 9 hours of fasting, respectively. The results showed that there were diurnal variation of serum insulin clearance in the high dose study (AM:791 +/- 54ml/min/M2, PM:947 +/- 53ml/min/M2, p less than 0.01), and the small dose study (AM:411 +/- 32ml/min/M2, PM:716 +/- 87ml/min/M2, p less than 0.001). Diurnal variation of insulin sensitivity as judged by dividing glucose infusion rate by the ambient serum free insulin level (M/FI ration), was only noted in the low dose insulin infusion clamp study (AM:14.6 +/- 2.4, PM:10.5 +/- 1.1, p less than 0.05). In summary, at low physiological levels of insulin the insulin sensitivity is better in the morning, whereas at both high and low insulin levels the insulin clearance of normal subject is greater in the evening. The mechanism of this diurnal variation of insulin clearance and sensitivity awaits further studies.  相似文献   

7.
Insulin resistance is well established in Cushing's syndrome, but its mechanisms are not completely understood. We performed the euglycemic insulin clamp technique on four patients with Cushing's syndrome, five obese patients and five normal volunteers, in order to determine the role of impairments in insulin responsiveness and insulin clearance in hypercorticism and obesity. Insulin was infused at 0.3, 1, 3 and 10 mU/kg/min, and steady-state glucose-infusion rates required to maintain euglycemia were determined. Glucose disposal at maximal insulin levels was 11.9 +/- 0.4 mg/kg/min in normals, with a 29% decrease in obese and a 42% decrease in Cushing's syndrome patients. Half maximally effective insulin concentrations were increased in both abnormal groups compared to normals. Maximal insulin clearance rates were 1460 +/- 200 ml/min/m2 in normals, not significantly changed in obese and 40% decreased in Cushing's syndrome patients. These results indicate that the insulin resistance in Cushing's syndrome is distinct from that occurring in obesity and is characterized by both decreased insulin responsiveness and decreased insulin clearance. These impairments could be caused by a common defect which may be at or distal to the glucose transport level.  相似文献   

8.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

9.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.  相似文献   

11.
1. Glucose uptake was measured throughout the year in marmots (Marmota flaviventris) by the hyperglycemic clamp technique. During each 2 hr experiment, the plasma glucose level was maintained at 215 mg/dl while blood samples were collected and analysed for glucose, insulin, glucagon, cortisol and catecholamines. 2. Glucose uptake was calculated from the glucose infusion rate, changes in the glucose pool (using a correction factor), and urinary glucose excretion. 3. In autumn, animals peaked in body weight (greater than 4.0 kg) and ceased to feed. Basal plasma insulin levels in autumn were significantly elevated over all other seasons (P less than 0.01) and glucose uptake in autumn was 9.7 +/- 2.4 mg/min which was significantly lower (P less than 0.05) than summer (21.7 +/- 2.4 mg/min) during the steady state phase of the glucose clamp (90-120 min). 4. Plasma glucagon levels declined during the clamp in all seasons but there was no significant difference between seasons. Plasma cortisol and catecholamine (norepinephrine and epinephrine) levels remained unchanged under basal and experimental conditions throughout the seasons. 5. During glucose infusion, beta-hydroxybutyrate levels were suppressed suggesting that lipolysis was reduced during the experiment. 6. These results suggest that the marmot exhibits seasonal changes in glucose uptake; the lowest rate of glucose uptake occurring in the autumn after the animals peak in body weight and cease to feed.  相似文献   

12.
The aim of this study was to investigate the influence of the arteriovenous (A-V) gradient in blood glucose concentrations at low and high insulin levels on the determination of glucose requirements during glucose clamping in 9 healthy, insulin sensitive, male volunteers. In a random order two clamps were performed, once using arterialised venous blood (A Clamp, mean pO2 = 11.5 +/- 0.36 kPa, 86 +/- 2.7 mmHg), and once using venous blood (V clamp, mean pO2 = 7.9 +/- 0.21 kPa, 59 +/- 1.6 mmHg). Insulin levels were maintained at 48 +/- 2.4 mU/l from 0-180 min and at 1054 +/- 114 mU/l from 180-360 min. Elevation of insulin levels caused a significant rise of the A-V gradient: from 0.3 +/- 0.1 to 0.5 +/- 0.1 mmol/l (p < 0.05) and from 0.2 +/- 0.1 to 0.3 +/- 0.1 mmol/l (p < 0.05) during the A and V clamps, respectively. Despite these A-V glucose gradients no significant differences were found for the glucose requirements during the last 30 min of each period of insulin infusion between the A and V clamps: 43.70 +/- 3.4 vs 44.8 +/- 2.8 mumol.kg-1.min-1 during the low insulin level and 77.3 +/- 5.0 vs 76.2 +/- 3.4 mumol.kg-1.min-1 during the high insulin level. We conclude that the A-V glucose gradient, even at high insulin levels, does not influence the assessment of glucose requirements to a measurable extent, allowing the use of the simpler technique of taking venous rather than arterialised venous blood for the measurements of glucose levels during glucose clamping.  相似文献   

13.
The effect of semisynthetic human insulin on hepatic glucose output, peripheral glucose clearance, plasma levels of C-Peptide, free fatty acids and amino acids was compared with purified pork insulin using the glucose clamp technique. 8 normal overnight-fasted subjects received intravenous infusions of either human or porcine insulin at 20 mU/m2.min(-1) during 120 min achieving plasma insulin levels of approximately equal to 50 mU/l. Plasma glucose levels were maintained at euglycaemia by variable rates of glucose infusion. Hepatic glucose production measured by continuous infusion of 3-(3) H-glucose was similarly suppressed by both insulins to rates near zero. The metabolic clearance rate of glucose increased during infusion of human insulin by 120%, C-peptide levels decreased by 41% and plasma FFA concentrations fell by 74%. The respective changes during infusion of pork insulin were similar, 118%, 48% and 72%. Both insulins decreased the plasma levels of branched-chain amino acids, tyrosine, phenylalanine, methionine, serine and histidine similarly. Thus, the results demonstrate that semisynthetic human and porcine insulin are aequipotent with respect to suppression of hepatic glucose output, stimulation of glucose clearance, inhibition of insulin secretion, lipolysis and proteolysis.  相似文献   

14.
To determine whether regulation of fasting endogenous glucose production (EGP) and glucose disappearance (R(d)) are both abnormal in people with type 2 diabetes, EGP and R(d) were measured in 7 "severe" (SD), 9 "mild" (MD), and 12 nondiabetic (ND) subjects (12.7 +/- 0.6 vs. 8.1 +/- 0.4 vs. 5.1 +/- 0.4 mmol/l) after an overnight fast and during a hyperglycemic pancreatic clamp. Fasting insulin was higher in both the SD and MD than ND subjects, whereas fasting glucagon only was increased (P < 0.05) in SD. Fasting EGP, glycogenolysis, gluconeogenesis, and R(d) all were increased (P < 0.05) in SD but did not differ in MD or ND. On the other hand, when glucose ( approximately 11 mmol/l), insulin ( approximately 72 pmol/l), and glucagon ( approximately 140 pg/ml) concentrations were raised to values similar to those observed in the severe diabetic subjects, EGP was higher (P < 0.001) and R(d) lower (P < 0.01) in both SD and MD than in ND. The higher EGP in the SD and MD than ND during the clamp was the result of increased (P < 0.05) rates of glycogenolysis (4.2 +/- 1.7 vs. 3.5 +/- 1.0 vs. 0.0 +/- 0.8 micromol.kg(-1).min(-1)), since gluconeogenesis did not differ among groups. We conclude that neither glucose production nor disappearance is appropriate for the prevailing glucose and insulin concentrations in people with mild or severe diabetes. Both increased rates of gluconeogenesis (likely because of higher glucagon concentrations) and lack of suppression of glycogenolysis contribute to excessive glucose production in type 2 diabetics.  相似文献   

15.
Whole body glucose uptake (BGU) and hepatic glucose production (HGP) at maximal plasma insulin concentrations (+/- 5000 microU/ml) were determined by eu- (EC) (6 mM) and hyperglycemic (HC) (20 mM) clamps (120 min), combined with [3-3H]glucose infusion, in normal and streptozotocin-treated (65 mg/kg) 3-day diabetic, conscious rats. In normal rats, during EC, BGU was 12.4 +/- 0.4 mg/min and during HC, when urinary glucose loss was 0.54 +/- 0.09 mg/min, BGU was 25.5 +/- 1.6 mg/min. However, throughout the final 60 min of HC, glucose infusion rate (GIR) was not constant but a linear decline in time (r = -0.99) of 17%, P less than 0.0001, was observed indicating a hyperglycemia-induced desensitization process. In diabetic rats, during EC, BGU was 7.7 +/- 0.3 mg/min and during HC, BGU was 15.5 +/- 1.4 mg/min. Throughout the final 60 min of HC, GIR was constant, suggesting that the hyperglycemia-induced desensitization process was already completed. In normal and diabetic rats, HGP was similar: during EC 0.2 +/- 0.5 mg/min and 0.1 +/- 0.5 mg/min, and during HC 0.4 +/- 0.4 mg/min and 0.5 +/- 0.6 mg/min, respectively. In vitro adipocyte and muscle insulin receptor studies showed normal to increased receptor number and increased receptor autophosphorylation in diabetic compared to normal rats. In conclusion: (i) 3-day diabetic rats show, at maximal plasma insulin concentrations, insulin resistance to BGU, but not to HGP. The resistance to BGU is equally present (reduction of 38%) at eu- and hyperglycemic levels as compared to normal rats. (ii) 3-day diabetic rats reveal no defect in adipocyte and muscle insulin receptor function. These data indicate that the diabetes induced insulin resistance for BGU is at the post-receptor level and due to a decreased maximal capacity (Vmax) for glucose uptake, with no change in affinity, or Km.  相似文献   

16.
It is difficult, if not impossible, to measure the placental transfer of glucose directly because of placental glucose consumption and the low A-V glucose difference across the sheep placenta. We have approached the problem of quantifying placental hexose transfer by using a nonmetabolized glucose analogue (3-O-methyl glucose) which shares the glucose transport system. We have measured the clearance by using a multisample technique permitting least squares linear computing to avoid the errors implicit in the Fick principle. The placental clearance of 3-O-methyl glucose was measured in the control condition and after the administration of insulin to the fetal circulation. A glucose clamp technique was used to maintain constant transplacental glucose concentrations throughout the duration of the experiment. A control series was performed in which the only intervention was the infusion of normal saline. In these experiments the maternal and fetal glucose concentrations remained constant as did the volume of distribution of 3-O-methyl glucose in the fetus. The maternal insulin concentration remained constant and fetal insulin concentration changed from 11 +/- 2 microU/ml to 355 +/- 51 microU/ml (P less than 0.01). In the face of this large increase in fetal plasma insulin, there was no change in the placental clearance of 3-O-methyl glucose. In the control condition the clearance was 14.1 +/- 1.0 ml/min per kg and this was 13.8 +/- 1.0 ml/min per kg in the high insulin condition. Fetal insulin may change placental glucose flux by decreasing fetal plasma glucose concentrations but does not do so by changing the activity of the glucose transport system.  相似文献   

17.
Glucose turnover in compensated hepatic cirrhosis   总被引:1,自引:0,他引:1  
Glucose turnover and recycling from glucose derived 3-carbon intermediates were examined in overnight fasted patients with compensated hepatic cirrhosis and in age- and weight-matched normal control subjects. Fasting blood concentrations of glucose, lactate and glycerol were similar in both groups but blood pyruvate (60 +/- 10 vs. 80 +/- mumol/l, P less than 0.05), blood alanine (0.23 +/- 0.02 vs 0.34 +/- 0.02 mmol/l, P less than 0.01) were decreased and serum insulin increased (19 [13-24]v 7 [4-11] mU/l, P less than 0.01) in cirrhotic subjects. Absolute glucose turnover, assessed by analysis of decay of [3H]-3-glucose specific activity was decreased in cirrhotic patients (8.1 +/- 0.6 v 12.1 +/- 0.7 mol/kg-1 min-1). Glucose "recycling", assessed by the difference between absolute glucose turnover and that given by [14C]-1-glucose data, was normal in cirrhotic patients suggesting that Cori cycle (glucose-lactate-glucose) activity was normal. These data support previous findings of decreased peripheral glucose utilisation and insulin resistance in cirrhotic patients.  相似文献   

18.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

20.
To directly evaluate prehepatic secretion of pancreatic hormones during a 3-h oral glucose tolerance test (OGTT), we measured insulin and C-peptide in six healthy control, six obese, and six type 2 diabetic subjects in the femoral artery and hepatic vein by means of the hepatic catheterization technique. Hypersecretion in obesity was confirmed (309 +/- 66 nmol in obese vs. 117 +/- 22 in control and 79 +/- 13 in diabetic subjects, P 0.3, r(2) = 0.93), whereas estimation of hepatic insulin extraction and insulin clearance needs further investigation for improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号