首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three forms of glutathione transferase (GST) with an apparent isoelectric point of pH 4.65 (GST I), 4.75 (GST II) and 4.9 (GST III) were resolved from the monkey (Macaca fascicularis) placenta after GSH-affinity chromatography followed by chromatofocusing. Substrate specificity, immunological reactivity, as well as N-terminal aminoacid sequences indicate that the three enzymes belongs to the pi class of GST. Reverse phase HPLC analysis indicates that the three GST arise from the combination of two different subunits eluting respectively at 29.60 ± 0.10min and32.43 ± 0.13min. GST I is an homodimer of the 29.60 ± 0.10min subunit, GST III is an homodimer of the 32.43 ± 0.13 min subunit, whereas the GST II is an heterodimer of the 29.60 ± 0.10min and 32.43 ± 0.13min subunits. Our results strongly suggest that unlike human, multiple forms of pi class GST exist in monkey placenta.  相似文献   

2.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

3.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

4.
Three forms of glutathione transferase (GST) with pI values of 6.0, 6.4 and 7.3 were isolated from Proteus mirabilis AF 2924 by glutathione-affinity chromatography followed by isoelectric focusing, and their structural, kinetic and immunological properties were investigated. Upon SDS/polyacrylamide-slab-gel electrophoresis, all forms proved to be composed of two subunits of identical (22,500) Mr. GST-6.0 and GST-6.4 together account for about 95% of the total activity, whereas GST-7.3 is present only in trace amounts. Extensive similarities have been found between GST-6.0 and GST-6.4. These include subunit molecular mass, amino acid composition, substrate specificities and immunological characteristics. GST-7.3 also cross-reacted (non-identity) with antisera raised against bacterial GST-6.0. None of the antisera raised against a number of human, rat and mouse GSTs cross-reacted with the bacterial enzymes, indicating major structural differences between them and the mammalian GSTs. This conclusion is further supported by c.d. spectra.  相似文献   

5.
This paper deals with the purification and the partial characterization of glutathione S-transferase (GST) isoforms from the clam Ruditapes decussatus. For the first step of purification, two affinity columns, reduced glutathione (GSH)-agarose and S-hexyl GSH-agarose, were mounted in series. Four affinity fractions were thus recovered. Further purification was performed using anion exchange chromatography. Seven fractions, which present a GST activity with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, were collected and analyzed by RP-HPLC. Seven distinct GST isoforms were purified, six of them were homodimers, the last one was a heterodimer consisting of the subunits 3 and 6. Kinetic parameters were studied. Results showed that isoforms have distinct affinity and Vmax for GSH and CDNB as substrates. The catalytic activity of the heterodimer isoform appeared to be a combination of the ability of each subunit. The immunological properties of each purified isoform were investigated using three antisera anti-pi, anti-mu and anti-alpha mammalian GST classes. Three isoforms (3-3, 6-6 and 3-6) seem to be closely related to the pi-class GST. Both isoforms 1-1 and 2-2 cross-reacted with antisera to pi and alpha classes and the isoform 5-5 cross-reacted with the antisera to mu and pi classes. Subunit 4 was recognized by the three antisera used, and its N-terminal amino acid analysis showed high identity (53%) with a conserved sequence of an alpha/m micro /pi GST from Fasciola hepatica.  相似文献   

6.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

7.
The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroace-tyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29 and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE di-ethylaminoethyl - FPLC fast protein liquid chromatography - GSH reduced glutathione - GST glutathione S-transferase - GST-26 26-kDa subunit of maize GST - GST-27 27-kDa subunit of maize GST - GST-29 29-kDa subunit of maize GST - R-25788 safener N,N-diallyl-2-dichloroacetamide - R-29148 safener 3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidone - RPLC reverse phase liquid chromatography We are grateful to M-M. Lay, ZENECA AG Products (formerly ICI Americas), Richmond, Calif., USA for providing [14C] R-25788. ZENECA Seeds in the UK is part of ZENECA Limited.  相似文献   

8.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

9.
A single glutathione transferase isoenzyme was purified from hepatic cytosol of the brushtail possum and shown to represent 3.6 ± 0.3% of the total cytosolic protein. Characterisation of the enzyme, termed Possum GST 1–1, indicated that it possessed similar catalytic activity and structural homology with isoenzymes belonging to the alpha class of glutathione transferases. This homodimeric GST exhibited a single band with an apparent molecular mass of 25.4 kDa on sodium dodecyl sulphate-polyacrylamide gels and an apparent pI of 9.8. Inhibition studies demonstrated that Possum GST 1–1 displays binding affinity for a range of inhibitors similar to that shown by alpha class GSTs purified from other mammals. Immunoblot analysis demonstrated immuno-cross reactivity between Possum GST 1–1 and antisera raised against human alpha GST, while this GST did not cross-react with antisera raised against human mu and pi GST. N-terminal sequencing of purified Possum GST 1–1 revealed that the N-terminus of the protein is chemically blocked. Sequence analysis of three internal peptide sequences demonstrated homology with mammalian alpha GSTs. Of particular interest is the significant substrate specificity that Possum GST 1–1 displays with both organic and inorganic hydroperoxides. It is proposed that this substrate specificity is an evolutionary adaptation to a diet high in potentially toxic plant allelochemicals.  相似文献   

10.
The anionic glutathione transferase of human heart has been purified to homogeneity by using DEAE-cellulose, affinity chromatography, and FPLC. The enzyme has an isoelectric point at pH 4.75 and has an electrophoretic mobility on SDS-PAGE identical to placental transferase pi, indicating that the heart enzyme is formed by two similar subunits of 23,000 Mr. Upon isoelectric focusing on ampholine PAG plates the enzyme recovered from FPLC gave two bands of activity at pH 4.75 and 4.9 which were reduced to essentially a single band at pH 4.75 after incubation with dithiothreitol. In the immunodiffusion experiment, the heart enzyme gave a positive precipitin line with the antibodies against transferase pi but not with antibodies prepared against the "basic" transferase of human skin or against the "near-neutral" transferase of human uterus. The substrate specificities, the sensitivities to characteristic inhibitors, the amino acid composition, together with the immunological studies, strongly indicate that the anionic enzyme of human heart is closely related to the transferase pi of human placenta. The N-terminal amino acid sequence of the first 48 residues was determined and compared with the N-terminal region of other reported human glutathione transferase sequences. The heart enzyme differs from the placental enzyme in a single residue (Trp instead of Arg in the 28th position) further supporting their similarity.  相似文献   

11.
1. Three zymogens have been isolated from human gastric mucosae and two from the stomachs of the toad Caudiverbera caudiverbera. 2. Human zymogens I and III were immunologically related and cross-reacted with antisera prepared against porcine pepsinogen. The third, (II), showed no cross-reactivity. 3. Human zymogens I and III and toad zymogen ZII gave rise to two human pepsins and to a pepsin-like enzyme, respectively. 4. Human zymogen II (gastricsinogen) and toad zymogen ZI gave rise to human gastricsin and to a gastricsin-like enzyme respectively. 5. The toad enzymes showed much greater stability at neutral and alkaline pH values than the human enzymes.  相似文献   

12.
Glutathione transferase isoenzymes from human prostate.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using affinity-chromatography and isoelectric-focusing techniques, several forms of glutathione transferase (GSTs) were resolved from human prostate cytosol. All the three major classes of GST, i.e. Alpha, Mu and Pi, are present in human prostate. However, large inter-individual variation in the qualitative and quantitative expression of different isoenzymes resulted in the samples investigated. The most abundant group of prostate isoenzymes showed acid (pI 4.3-4.7) behaviour and were classified as Pi class GSTs on the basis of their immunological and structural properties. Immunohistochemical staining of Pi class GSTs was prevalently distributed in the epithelial cells surrounding the alveolar lumen. Class Mu GSTs are also expressed, although in small amounts and in a limited number of samples, by human prostate. The major cationic isoenzyme purified from prostate, GST-9.6; (pI 9.6; apparent subunit molecular mass of 28 kDa), appears to be different from the cationic GST alpha-epsilon forms isolated from human liver and kidney as evidenced by its structural, kinetical and immunological properties. This enzyme, which accounts for about 20-30% (on protein basis) of total amount of GSTs, is expressed by only 40% of samples. GST-9.6 has the ability to cross-react in immunoblotting analysis with antisera raised against rat liver GST 2-2, rather than with antisera raised against members of human Alpha, Mu and Pi class GSTs. Although prostate GST-9.6 shows close relationship with the human skin GST pI 9.9, it does not correspond to any other known human GST.  相似文献   

13.
An NAD+-dependent malate dehydrogenase (MDH, EC 1.1.1.37) was purified and characterized from leaves of pineapple ( Ananas comosus ), a plant with Crassulacean acid metabolism (CAM). The purified enzyme had a subunit molecular mass of 39.5 kDa. Its activity showed a maximum at pH 6.8–7.0 and decreased sharply towards pH 8.0. This activity profile coincided with a change in the aggregation state, as determined by gel filtration on high-performance liquid chromatography from a dimer at pH 7.0 to a tetramer at pH 8.0. This isozyme is one of at least 5 MDH in pineapple leaves distinguishable by non-denaturing isoelectric focusing and displayed an isoelectric point of 5.8. The ratio of oxaloacetate reduction versus malate oxidation rates varied between 431 and 52 at pH 6.8 and 7.5, respectively. Antibodies raised against the purified pineapple leaf MDH immunodecorated a single 39.5-kDa polypeptide in denatured crude leaf extracts, but did not cross-react with extracts from purified pineapple mitochondria possessing high MDH activity. The purified MDH was recognized by monoclonal antibodies raised against the cytosolic MDH from Echinococcus granulosus . These and other distinctive traits, such as its isoelectric point and its subunit mass, suggest that the purified isozyme is the cytosolic MDH. Its properties are consistent with an implied function in the night acidification typical of CAM plants, although it is less clear if it also has a role in the daytime decarboxylation of malate.  相似文献   

14.
A sensitive and convenient method for the quantitative measurement of human alcohol dehydrogenase (ADH) isozymes based on enzyme-linked immunosorbent assay has been devised. The procedure was optimized with respect to antigen coating density, antiserum dilution, and incubation times with rabbit antisera raised against beta 1 beta 1-ADH to achieve a limit of sensitivity of 1 ng/ml for this isozyme when purified. Using the optimal conditions established, quantitative measurement of alpha beta 1, alpha gamma 1, beta 1 gamma 1, pi, and chi-ADH were obtained with antisera raised in rabbits toward these individual isozymes. The incorporation into the procedure of thimerosal (ethyl(4-mercaptobenzoato-S)mercury) or other sulfhydryl specific reagents improved the soluble phase antiserum avidity for all ADH isozymes, thereby increasing the sensitivity. Thimerosal is an absolute requirement for chi-ADH antigen-antibody binding. The polyclonal rabbit antisera elicited by the individual isozymes of the three classes of ADH exhibit a high degree of isozyme class specificity. Cross-reactivity of the antibodies with the beta 1 beta 1, alpha gamma 1, alpha gamma 2, alpha beta 1, beta 1 gamma 1, beta 1 gamma 2, pi and chi isozymes were evaluated. Antisera against the class I isozymes beta 1 beta 1 and beta 1 gamma 1 cross-react with all class I isozymes and with pi-ADH. Antibodies against pi and chi-ADH are selective and specific only for their respective antigens. Neither one cross-reacts with any class I isozyme. Conformational effects resulting from subunit interactions likely account for differences in cross-immunoreactivity between the closely homologous class I isozymes.  相似文献   

15.
Immunocytochemistry was used to investigate the distribution of cells reacting with specific antibodies against glutathione S-transferase (GST) mu and pi in rat circumvallate and foliate taste buds; the findings were confirmed by Western blotting. Double immunofluorescence staining for protein gene product (PGP) 9.5 and GST subunits allowed the classification of taste bud cells of both papillae into: (i) cells immunoreactive to either PGP 9.5 or GST subunit antibody; (ii) cells immunoreactive to both antibodies; and (iii) cells that did not react with either of these antibodies. Immunoelectron microscopy revealed that most GST subunit-immunoreactive cells seemed to be either type II or type III cells based on their ultrastructure. Since PGP 9.5 is now widely used as a marker for type III cells in mammalian taste buds, it seems reasonable to believe that most GST subunit-immunoreactive cells are type II cells. Whether cells immunoreactive for both PGP 9.5 and GST subunits constitute a small subpopulation of type III cells or whether they are intermediate forms between type II and III cells is under investigation. No type I cells reacted with antibodies against GST subunits in the present study. GST subunits in taste bud cells may participate in xenobiotic metabolism of certain substances exposed to taste pits, as already shown for olfactory epithelium.  相似文献   

16.
Tartrate-inhibitable acid phosphatase was purified to apparent homogeneity from human placenta. The enzyme is composed of two subunits with an apparent molecular mass of 48 kDa. Each subunit carries one oligosaccharide of the high-mannose/hybride type. The purified enzyme has an isoelectric point of pH 6.2. It cleaves phosphomonoester bonds at acid pH, is competitively inhibited by L-tartrate, Ki = 0.51 microM, and phosphate, Ki = 0.8mM. A monospecific antiserum raised against the purified placental enzyme precipitated 62% and 85% of the tartrate-inhibitable acid phosphatase present in extracts of placenta and fibroblasts, respectively. By means of subcellular fractionation and immunoprecipitation it was shown that the majority of tartrate-inhibitable acid phosphatase is located in lysosomes in normal and mucolipidosis II fibroblasts. In the human Hep G-2 hepatoma cells a significant fraction of the enzyme appears to be associated with non-lysosomal organelles.  相似文献   

17.
The isoelectric points of the membranes surrounding three classes of spinach chloroplasts have been determined by partition at different pH values in aqueous two-phase systems where the electrical potential differences at the interface are opposite (cross-partition). Class I chloroplasts, intact chloroplasts, have an isoelectric point at pH 3.8–4.1 and class II chloroplasts, broken chloroplasts or intact thylakoid membranes, have an isoelectric point at pH 4.7–4.9. The third class of particles, class III ‘chloroplasts’, that contain one or more chloroplasts, mitochondria, peroxisomes and some cytoplasm all surrounded by a membrane, probably the plasma membrane, have an isoelectric point at pH 3.4–4.0. The partition technique used presumably yields the isoelectric point of the surface of the membranes exposed to the phase system by the three classes of chloroplasts, i.e., the outer envelope membrane, the thylakoid membrane and the plasma membrane, respectively. The isoelectric points obtained with this technique are suggested to reflect protein to charged-lipid differences in the composition of the membranes.  相似文献   

18.
Antisera raised against fusion proteins consisting of murine laminin B1 and B2 subunit sequences fused to the C-terminus of Escherichia coli beta-galactosidase were tested for their subunit specificity on Western blots of deglycosylated murine Engelbreth-Holm-Swarm (EHS) laminin. The antisera raised against B2 subunit sequences (anti-XLB2.1 and anti-XLB2.2) bound only to the EHS laminin B2 subunit. One of the antisera raised against B1 subunit sequences (anti-XLB1.2) was specific for the B1 subunit, whereas two others (anti-XLB1.1 and anti-XLB1.3) cross-reacted with the EHS laminin B2 subunit. Gold-labelled heparin-albumin was shown to bind specifically to the A subunit of deglycosylated EHS laminin on Western blots. These reagents were used to identify the homologous subunits in rat parietal-yolk-sac laminin and human placental laminin. The anti-(fusion protein) antisera identified the B1 and B2 subunits of the rat laminin, and these were similar in size to the murine EHS B subunits. Human placental laminin gave bands of 400, 340, 230, 190 and 180 kDa on reducing SDS/PAGE. The anti-(fusion protein) antisera identified the 230 and 190 kDa bands as the B1 and B2 subunits respectively. Gold-labelled heparin-albumin bound to the 400, 340 and 190 kDa bands of human placental laminin and so did not unambiguously identify a single A subunit. The human placental laminin may contain a mixture of isoforms, with alternative subunits substituting for the A subunit.  相似文献   

19.
A plasmid, termed pTacGST2, which contains the complete coding sequence of a GST2 (glutathione S-transferase 2) subunit and permits the expression of the protein in Escherichia coli was constructed. The expressed protein had the same subunit Mr as the enzyme from normal human liver and retained its catalytic function with both GST and glutathione peroxidase activity. Antiserum raised against the bacterially synthesized protein cross-reacted with all the basic GST isoenzymes in human liver. The electrophoretic mobility in agarose of the bacterially expressed isoenzyme suggested that its pI is identical with that of the cationic isoenzyme from human liver previously termed GST2 type 1. The available evidence suggests that the three common cationic isoenzymes found in human liver are the products of two very similar gene loci.  相似文献   

20.
Polyclonal antibodies were elicited against seven of the 33 different proteins of the large subunit of the chloroplast ribosome from Chlamydomonas reinhardtii. Three of these proteins are synthesized in the chloroplast and four are made in the cytoplasm and imported. In western blots, six of the seven antisera are monospecific for their respective large subunit ribosomal proteins, and none of these antisera cross-reacted with any chloroplast small subunit proteins from C. reinhardtii. Antisera to the three chloroplast-synthesized ribosomal proteins cross-reacted with specific Escherichia coli large subunit proteins of comparable charge and molecular weight. Only one of the four antisera to the chloroplast ribosomal proteins synthesized in the cytoplasm cross-reacted with an E. coli large subunit protein. None of the antisera cross-reacted with any E. coli small subunit proteins. On the assumption of a procaryotic, endosymbiotic origin for the chloroplast, those chloroplast ribosomal proteins still synthesized within the organelle appear to have retained more antigenic sites in common with E. coli ribosomal proteins than have those which are now the products of cytoplasmic protein synthesis. Antisera to this cytoplasmically synthesized group of chloroplast ribosomal proteins did not recognize any antigenic sites among C. reinhardtii cytoplasmic ribosomal proteins, suggesting that the genes for the cytoplasmically synthesized chloroplast ribosomal proteins either are not derived from the cytoplasmic ribosomal protein genes or have evolved to a point where no antigenic similarities remain.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号