首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
外膜蛋白(Outer Membrane Proteins, OMPs)是一类具有重要生物功能的蛋白质, 通过生物信息学方法来预测OMPs能够为预测OMPs的二级和三级结构以及在基因组发现新的OMPs提供帮助。文中提出计算蛋白质序列的氨基酸含量特征、二肽含量特征和加权多阶氨基酸残基指数相关系数特征, 将三类特征组合, 采用支持向量机(Support Vector Machine, SVM)算法来识别OMPs。计算了包括四种残基指数的多种组合特征的识别结果, 并且讨论了相关系数的阶次和权值对预测性能的影响。在数据集上的十倍交叉验证测试和独立性测试结果显示, 组合特征识别方法对OMPs和非OMPs的识别精度最高分别达到96.96%和97.33%, 优于现有的多种方法。在五种细菌基因组内识别OMPs的结果显示, 组合特征方法具有很高的特异性, 并且对PDB数据库中已知结构的OMPs识别准确度超过99%。表明该方法能够作为基因组内筛选OMPs的有效工具。  相似文献   

2.
基于支持向量机方法的蛋白可溶性预测   总被引:1,自引:0,他引:1  
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测。选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较。对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法。其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法。  相似文献   

3.
按照蛋白质序列中残基的相对可溶性,将其分为两类(表面/内部)和三类(表面/中间/内部)进行预测.选择不同窗宽和参数对数据进行训练和预测,以确保得到最好的分类效果,并同其他已有方法进行比较.对同一数据集不同分类阈值的预测结果显示,支持向量机方法对蛋白质可溶性的整体预测效果优于神经网络和信息论的方法.其中,对两类数据的最优分类结果达到79.0%,对三类数据的最优分类结果达到67.5%,表明支持向量机是蛋白质残基可溶性预测的一种有效方法.  相似文献   

4.
根据凋亡蛋白的亚细胞位置主要决定于它的氨基酸序列这一观点,基于局部氨基酸序列的n肽组分和序列的亲疏水性分布信息,采用离散增量结合支持向量机(ID_SVM)算法,对六类细胞凋亡蛋白的亚细胞位置进行预测。结果表明,在Re-substitution检验和Jackknife检验下,ID_SVM算法的总体预测成功率分别达到了94.6%和84.2%;在5-fold检验和10-fold检验下,其总体预测成功率也都达到了83%以上。通过比较ID和ID_SVM两种方法的预测能力发现,结合了支持向量机的离散增量算法能够改进预测成功率,结果表明ID_SVM是预测凋亡蛋白亚细胞位置的一种很有效的方法。  相似文献   

5.
基于模糊支持向量机的膜蛋白折叠类型预测   总被引:1,自引:0,他引:1  
现有的基于支持向量机(support vector machine,SVM)来预测膜蛋白折叠类型的方法.利用的蛋白质序列特征并不充分.并且在处理多类蛋白质分类问题时存在不可分区域,针对这两类问题.提取蛋白质序列的氨基酸和二肽组成特征,并计算加权的多阶氨基酸残基指数相关系数特征,将3类特征融和作为分类器的输入特征矢量.并采用模糊SVM(fuzzy SVM,FSVM)算法解决对传统SVM不可分数据的分类.在无冗余的数据集上测试结果显示.改进的特征提取方法在相同分类算法下预测性能优于已有的特征提取方法:FSVM在相同特征提取方法下性能优于传统的SVM.二者相结合的分类策略在独立性数据集测试下的预测精度达到96.6%.优于现有的多种预测方法.能够作为预测膜蛋白和其它蛋白质折叠类型的有效工具.  相似文献   

6.
许嘉 《生物信息学》2013,11(4):297-299
抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展。提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。  相似文献   

7.
启动子预测是研究基因转录调控的重要环节,但现有算法的预测正确率偏低.在深入分析启动子生物特征的基础上,提出了一种基于支持向量机的枯草杆菌启动子预测算法,在启动子序列的组成特征、信号特征和结构特征中选取9种典型特征作为预测的依据,对于信号特征,除了利用保守模式的一致序列,还考虑了间隔距离的分布信息.首先通过特征描述模型分别计算每种特征在启动子序列和非启动子序列中的得分,将特征得分组合成9维特征向量,再利用支持向量机在特征向量集上进行训练和判别.对实际数据集进行的刀切法测试验证了算法的有效性.对σ启动予的预测,平均正确率达到了90.7%;对几种其它σ因子启动子的预测,平均正确率也超过了80%.算法不但有广泛的适用性,还有良好的可扩展性,能够方便的容纳新特征,使识别性能不断提高.  相似文献   

8.
利用支持向量机和蛋白质非稳定性指标预测凋亡蛋白类型   总被引:3,自引:0,他引:3  
黄静  石峰  周怀北 《生物信息学》2005,3(3):121-123
细胞凋亡蛋白对生物体的发育和体内稳定、对人们理解程序细胞凋亡的机制非常重要。根据在细胞中的位置,它们一般分为四种类型。文中利用支持向量机和蛋白质的非稳定性指标对98个细胞凋亡蛋白进行分类,取得了较好的结果。  相似文献   

9.
在蛋白质结构预测的研究中,一个重要的问题就是正确预测二硫键的连接,二硫键的准确预测可以减少蛋白质构像的搜索空间,有利于蛋白质3D结构的预测,本文将预测二硫键的连接问题转化成对连接模式的分类问题,并成功地将支持向量机方法引入到预测工作中。通过对半胱氨酸局域序列连接模式的分类预测,可以由蛋白质的一级结构序列预测该蛋白质的二硫键的连接。结果表明蛋白质的二硫键的连接与半胱氨酸局域序列连接模式有重要联系,应用支持向量机方法对蛋白质结构的二硫键预测取得了良好的结果。  相似文献   

10.
膜蛋白是一类结构独特的蛋白质,是细胞执行各种功能的物质基础。根据其在细胞膜上的不同存在方式,主要分为六种类型。本文利用压缩的氨基酸对原始膜蛋白序列进行信息压缩,再对压缩序列进行氨基酸组成和顺序特征的提取,最后采用支持向量机构建分类模型。通过五叠交叉验证的结果表明,该方法对于六种膜蛋白的分类预测,准确度最高可达98%以上,平均预测准确度在85%以上,可有效实现膜蛋白六种类型的划分,为进一步分析膜蛋白的结构和功能奠定基础。  相似文献   

11.
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death, and their function is related to their types. According to the classification scheme by Zhou and Doctor (2003), the apoptosis proteins are categorized into the following four types: (1) cytoplasmic protein; (2) plasma membrane-bound protein; (3) mitochondrial inner and outer proteins; (4) other proteins. A powerful learning machine, the Support Vector Machine, is applied for predicting the type of a given apoptosis protein by incorporating the sqrt-amino acid composition effect. High success rates were obtained by the re-substitute test (98/98 = 100 %) and the jackknife test (89/98 = 90.8%).  相似文献   

12.
Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.  相似文献   

13.
Intravascular optical coherence tomography (IVOCT) is becoming more and more popular in clinical diagnosis of coronary atherosclerotic. However, reading IVOCT images is of large amount of work. This article describes a method based on image feature extraction and support vector machine (SVM) to achieve semi-automatic segmentation of IVOCT images. The image features utilized in this work including light attenuation coefficients and image textures based on gray level co-occurrence matrix. Different sets of hyper-parameters and image features were tested. This method achieved an accuracy of 83% on the test images. Single class accuracy of 89% for fibrous, 79.3% for calcification and 86.5% lipid tissue. The results show that this method can be a considerable way for semi-automatic segmentation of atherosclerotic plaque components in clinical IVOCT images.  相似文献   

14.
利用分散量的数学理论,提出了基于最小分散增量的蛋白质序列辨识方法.通过多种特征联合对蛋白质序列进行编码,并建立基于最小分散增量的分类器MID_OMP,应用于革兰氏阴性细菌外膜蛋白序列辨识.在数据集上的Jackknife测试中,MID_OMP辨识外膜蛋白和α螺旋跨膜蛋白的准确率达到95.7%,辨识外膜蛋白和球状蛋白的准确率达到91.0%;在14个细菌基因组内挖掘结果显示,MID_OMP具有较高的敏感性和特异性,预测结果的可信度明显优于另外一种OMPs挖掘工具TMBETA-GENOME.  相似文献   

15.
支持向量机在害虫发生量预测中的应用   总被引:6,自引:0,他引:6  
害虫发生量与其影响因子之间具有复杂的非线性和时滞性关系,传统方法不能很好的分析和拟合高度非线性的害虫发生量变化规律,导致预测精度不理想。为了有效构建害虫发生量与其影响因子之间复杂的非线性关系模型,提高害虫发生量预测精度,提出一种基于支持向量机的害虫发生量预测方法。该方法首先通过F测验对害虫发生量的最佳时滞阶数进行确定,并利用最佳时滞阶数对样本进行重构;然后利用前向浮动因子筛选法对害虫发生量的影响因子进行筛选,筛选出对预测结果贡献大的影响因子;最后采用10折交叉验证得到害虫发生量的最优预测模型。采用粘虫的幼虫发生密度数据在Mat-lab7.0平台下对该方法进行测试与分析,实验结果表明,相对于其它预测方法,支持向量机提高了害虫发生量的预测精度,克服了传统方法的缺陷,更适合于非线性、小样本的害虫发生量预测。  相似文献   

16.
基于支持向量机的蛋白质同源寡聚体分类研究   总被引:13,自引:1,他引:13  
基于支持向量机和贝叶斯方法,从蛋白质一级序列出发对蛋白质同源二聚体、同源三聚体、同源四聚体、同源六聚体进行分类研究,结果表明:基于支持向量机, 采用“一对多”和“一对一”策略, 其分类总精度分别为77.36%和93.43%, 分别比基于贝叶斯协方差判别法的分类总精度50.64%提高26.72和42.79个百分点.从而说明支持向量机可用于蛋白质同源寡聚体分类,且是一种非常有效的方法.对于多类蛋白质同源寡聚体分类,基于相同的机器学习方法(如支持向量机),采用“一对一”策略比“一对多”效果好.同时亦表明蛋白质同源寡聚体一级序列包含四级结构信息.  相似文献   

17.
比较序列分析作为RNA二级结构预测的最可靠途径, 已经发展出许多算法。将基于此方法的结构预测视为一个二值分类问题: 根据序列比对给出的可用信息, 判断比对中任意两列能否构成碱基对。分类器采用支持向量机方法, 特征向量包括共变信息、热力学信息和碱基互补比例。考虑到共变信息对序列相似性的要求, 通过引入一个序列相似度影响因子, 来调整不同序列相似度情况下共变信息和热力学信息对预测过程的影响, 提高了预测精度。通过49组Rfam-seed比对的验证, 显示了该方法的有效性, 算法的预测精度优于多数同类算法, 并且可以预测简单的假节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号