首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

2.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

3.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

4.
The objective of the present study was to quantify mesozooplanktongrazing in the eutrophic waters of Guanabara Bay. Mesozooplankton(>200 µm) was dominated by the copepods Acartia lilljeborgi,Acartia tonsa, Parvocalanus crassirostris and Paracalanus furcatus.Dinoflagellates, specifically the species Prorocentrum triestinum,were an important group for mesozooplankton nutrition, beingingested in significant amounts during all experiments. On average,12.3 ± 2.9 P. triestinum cells were ingested copepod–1min–1 (other dinoflagellates: 11 ± 8 cells copepod–1min–1). Filamentous cyanophyceae and nanoplankton wereingested in one experiment each, but the mesozooplankton communitygenerally preferred dinoflagellates to these groups, which werealways abundant in the water column. Euglenophyceae were notingested, although they dominated in one experiment. Mesozooplanktoningested, on average, only 0.2% of the nano- and microplanktonbiomass per day. The results suggest that grazing was not acontrolling process for the nano- and microplankton communityin the study area. Addition of zoeae larvae of Chasmagnatusgranulata (Decapoda: Brachyura: Grapsidae) in one experimenthad a significant effect on the mortality of adult copepods,probably due to a predator–prey relationship.  相似文献   

5.
The planktonic rotifer Ascomorpha ovalis feeds on large dinoflagellates(e.g. Ceratium sp., Peridinium sp.) and is able to extract theircell contents by means of its virgate mastax. This paper presentsthe results of experiments on the feeding behaviour of laboratory-culturedAscomorpha with Cerarium furcoides as food algae. Ascomorphaare three times larger than their prey Ceratium (by volume),but with regard to total length, their prey was even 20% larger.Ascomorpha showed a hyperbolic functional response curve witha plateau of the feeding rate at 8 Ceratium cells animal–1dar–1 when concentrations of Ceratium were >100 cellsml–1. The mean handling time (time for capturing and extractingone Ceratium cell) was 3 min. The shape of the functional responsewas better described by a curvilinear model than by a rectilinearmodel. However, handling times cannot be responsible for this,since they were too short to set limits on ingestion rates.At low food concentrations, encounter rates with prey seemedto limit the feeding rates of Ascomorpha, whereas at mediumto high food concentrations, Satiation effects (lower attackrates) seemed to set limits on the feeding rates. Ascomorphashowed a significant decrease in the exploitation of singleCeratium cells at high prey concentrations. This decrease couldbe explained by a saturation effect in which the partly filledguts of Ascomorpha did not permit the total extraction of thecontents of a Ceratium cell.  相似文献   

6.
The heterotrophic dinoflagellate Noctiluca scintillans has anegligible swimming ability and feeds predominantly on immobileprey. How, then, does it encounter prey? Noctiluca scintillansis positively buoyant and, therefore, we hypothesized that itintercepts prey particles during ascent and/or that microscaleshear brings it into contact with prey. Noctiluca scintillanshas a specific carbon content 1–2 orders of magnitudeless than that typical for protists and, thus, an inflated volume.It also has a density slightly less than that of the ambientwater and therefore ascends at high velocities (-1 m h–1).In stagnant water, clearance rates of latex spheres (5–80µm) increased approximately with prey particle size squared.This scaling is consistent with N.scintillans being an interceptionfeeder. However, absolute clearance rates were substantiallylower than those predicted by modeling N.scintillans both asa spherical and as a cylindrical collector. The latter modelassumes that prey particles are collected on the string of mucusthat may form at the tip of the tentacle. Feeding, growth andprey selection experiments all demonstrated that diatoms arecleared at substantially higher rates than latex beads and otherphytoplankters, particularly dinoflagellates. We propose thatdiatoms stick more efficiently than latex beads to the mucusof N.scintillans and that dinoflagellates reduce fatal contactbehaviorally. We conclude that N.scintillans is an interceptionfeeder and that the high ascent velocity accounts for encounterswith prey. However, the flow field around the cell-mucus complexis too complicated to be described accurately by simple geometricmodels. Fluid shear (0.7–1.8 s–1 had a negativeimpact on feeding rates, which were much less than predictedby models. Noctiluca scintillans can survive starvation forlong periods (>3 weeks), it can grow at low concentrationsof prey (-15 µg C l–1), but growth saturates onlyat very high prey concentrations of 500–1000 µgC l–1 or more. We demonstrate how the functional biologyof N.scintillans is consistent with its spatial and seasonaldistribution, which is characterized by persistence in the plankton,blooms in association with high concentrations of diatoms, andsurface accumulation during quiescent periods or exponentialdecline in abundance with depth during periods of turbulentmixing.  相似文献   

7.
Grazing and ingestion rates of laboratory-born Thalia democraticaaggregates and Dolioletta gegenbauri gonozooids, phorozooidsand oozooids were determined while fed Isochrysis galbana (4–5µm diameter) alone or in combination with Peridinium trochoideum(16–18 µm diameter) at concentrations of 0.15–0.70mm3 x 1–1. Grazing rates (ml x zooid–1 x 24 h –1)ranged from 10 to 355, and at zooid weights greater than 5 µgcarbon were in order oozooid > gonozooid > aggregate.Grazing rates increased exponentially with increasing zooidweight. Weight-specific grazing rates (ml x µgC–1x 24 h–1) were independent of the four-fold initial foodconcentration. Mean weight-specific grazing rates increasedlinearly with increasing zooid weight for the aggregates andoozooids, but gonozooid mean rates were independent of zooidweight. Aggregate and gonozooid ingestion rates (106 µm3x zooid–1 x 24 h–1) ranged from 4 to 134 while oozooidrates ranged from 3 to 67. All ingestion rates were independentof the initial food concentration but increased linearly withincreasing zooid weight at similar rates. All mean weight-specificingestion rates (ml x µgC–1 x 24 h–1) wereindependent of zooid weight. The mean aggregate daily ration(µgC ingested x µg body C–1) was 59% and themean doliolid ration was 132%. Field studies indicate that normalconcentrations of D. gegenbauri in the Georgia Bight clear theirresident water volume (1 m3) in about 4 months, but that highlyconcentrated, swarm populations which occur along thermohalinefronts clear their resident water volume in less than 1 day. 1Current address: MacLaren Plansearch Ltd., P.O.Box 13250, sta.A.,St.John's, Nfld. A1B 4A5  相似文献   

8.
Bolinopsis vitrea is a warm water lobate ctenophore which doesnot overlap in its distribution with Mnemiopsis mccradyi incontiguous waters. We examined its feeding ecology on a seriesof cruises. B. virrea ingested increasingly more prey at higherfood concentrations (2–100 prey l–1) but feedingeffort (clearance rate) decreased with increasing food availability.On a dry weight basis, smaller tentaculate Bolinopsis ingestedseveral times more than larger lobates, but based on carbonweight, specific ingestion was fairly uniform over the entiresize range investigated (6–60 mm total length). Bolinopsiscollected during the daytime in the Bahamas rarely had morethan three prey items in their guts. These results and laboratorymeasurements of digestion times (av. = 1.9 h) allowed computationof daily rations, which could not account for the metabolicrequirement as measured on the same cruises. Results of feedingexperiments, however, implied that prey densities in excessof 11–1 were sufficient to sustain a growing populationof Bolinopsis. Prey concentrations about an order of magnitudehigher were required for M. mccradyi based on similar experiments.These results were in general agreement with observed densitiesand distributions of ctenophores and their zooplankton preyin the Bahamas and coastal South Florida.  相似文献   

9.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

10.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

11.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

12.
Egg production and hatching success were determined for individualCentropages typicus fed two diatoms (Thalassiosira rotula andPhaeodactylum tricomutum) and two dinoflagellates (Prorocen-trumminimum and Gonyaulaxpolyedrd). Both reproductive responseswere strongly affected by food type. Females incubated withoutmales produced eggs with all diets, but fecundity was twiceas high with the larger T. rotula and G.polyedra cells. In contrast,hatching success was 2–3 times higher with the dinoflagellatediets. The presence of males did not enhance egg productionrates. Males also did not improve hatching success when thediet consisted of the diatom T.rotula. However, egg viabilitywas higher for couples fed the dinoflagellate G.polyedra, indicatingthat egg viability was possibly being controlled by both rematingand food type. Egg viability was artificially lowered by exposingnewly spawned eggs to high concentrations (104–109 pgC) of extracts from T.rotula, whereas the development of eggsproceeded normally at all concentrations of extracts from P.minimum.Blockage of egg development was not due to anoxia, but to thepresence of intracellular, deleterious chemical compounds indiatoms, suggesting that bottom-up prey control mechanisms underlieseasonal fluctuations in C.typicus populations at sea.  相似文献   

13.
Simultaneous ingestion and egg production experiments were conductedwith female Calanus finmarchicus in April/May and July/August2002 in the Irminger Sea. Experimental animals were providedwith natural microplankton food assemblages and incubated underin situ conditions for 24 h. The quantity of food consumed wassignificantly related to the concentration of prey cells, withtotal daily ingestion rates ranging from 0.6 to 8.1 µgof carbon female–1 day–1, corresponding to carbon-specificrates of 0.6–4.7% day–1. Egg production rates (EPRs)remained relatively low (0.3–11 eggs female–1 day–1)during both periods of investigation and were not influencedby food availability. The data were used to construct energeticbudgets in which the microplankton carbon ingested, includingciliates, was compared with the carbon utilized for egg productionand respiration. These budgets showed that ingestion alone couldnot provide the necessary carbon to sustain the observed demandsfor growth and metabolism. Although ciliates constituted >80%of the total material ingested at times, they were not sufficientto provide the metabolic shortfall. Indeed, the females weretypically lacking 5 µg of carbon each day, 5% of theircarbon biomass. Our study results highlight the possible importanceof internal reserves in sustaining reproduction in C. finmarchicusduring periods of food scarcity.  相似文献   

14.
The amount of fucoxanthin, a taxonomically diagnostic carotenoid,recovered after passage through the guts of the copepods Acartiacalifomiensis and Calanus pacificus, was determined after thecopepods had fed on low (50 µg Cl–1) and high (350µg C1–1 for Acartia; 500 ug C H for Calanus) concentrationsof the diatom Thalassiosira weissftogii, during spring (May)and winter (December). Changes in pigment concentrations andcell abundances were assessed in experimental (with copepods)and control (without copepods) samples by standard incubationexperiments. Pigment recovery was assessed by (i) comparingthe amount of ingested pigment recovered in the experimentalgroups with that predicted to have been ingested from cell countdata and (ii) comparing fuco-xanthin/cell ratios in controland experimental samples. Both techniques suggested that pigmentloss is substantial (usually 60–100%), regardless of species,food availability or season. Patterns of pigment conservationdiffered between species, although pigment recovery was alwayshigher at high, than at low, food concentrations. Pigment recoveryin Acartia was higher (9.4–28.0%) in the spring than duringthe winter (0 recovery), regardless of food concentration. InCalanus, however, pigment recovery was always higher at high(34.9–67.8%) than at low (0 recovery) food concentrations,regardless of season.  相似文献   

15.
Growth and feeding rates of a laboratory-reared small thecateheterotrophic dinoflagellate, Protoperidinium hirobis Abè,grown on the diatom Leptocylindrus danicus, were measured inbatch cultures. Ingestion rates were determined directly bythe enumeration of empty diatom frustules produced by dinoflagellatefeeding. Both growth and feeding rates saturated at diatom concentrationsof {small tilde} 104 cells ml–1, and reached maximum valuesof 1.7 divisions day–1 and 23 diatoms grazer–1 day–1,respectively. This rate of cell division is notably high comparedto photosynthetic dinoflagellates, which seldom grow fasterthan 1 division day–1. A maximal clearance rate of 0.5µl h–1 was measured. Mean cell size varied proportionallywith food abundance, with food-saturated cells having doublethe mean volume of food-depleted cells. Tuning of cell divisionand grazing rate patterns were also examined; while mitosisoccurred chiefly during the dark period, no diel variationsin feeding rate were detected. These rates represent the firstdirect growth and ingestion measurements to be made for a thecateheterotrophic dinoflagellate. They serve to underscore one functionthese dinoflagellates perform within the microzooplanktonicfood web: that of transforming large diatoms into particlesmore easily ingested by microzooplankters.  相似文献   

16.
A dual radioactive-labelled bacteria technique using Vibrio(DRLV), developed for laboratory studies on bacterivory, hasbeen refined for use at the concentrations of prey and predatorstypcially found at sea. Experiments with estuarine water collectedin spring and in autumn showed that bacterivorous nanoflagellates(HNF) (concentration 1.38±0.35x103 HNF ml–1) ingested2.7±0.96 DRLV flagellate1–1 h–1 at concentrationsof 0.8–2.2x106 DRLV ml–1 in the presence of 2.04±0.68x106natural bacteria ml–1. The method was also applied tosamples collected in October in the Celtic Sea, when on average1 ml of water from the surface layer contained 1.41±0.16x106natural bacteria, 14.6x103 cyanobacteria, 530±170 HNF,7.3±3.0x103 phototrophic nanoflagellates (1.5–4µm), 49.0±26.5 phototrophic dinoflagellates, 36.3±12.6heterotrophic dinoflagellates and 21.3±9.5 Leucocryptosmarina. Under these conditions the grazing rate in most samplesdid not exceed the coefficient of variation of the method (2%),although we estimate the grazing rate was -1.6 DRLV HNF–1h–1 and on one occasion a rate of 2.45 was recorded. Thegross growth efficiency for protein of -30% displayed by naturalHNF means that they could release about  相似文献   

17.
Growth rates, ingestion rates and grazer yields (grazer volumeproduced/prey volume consumed) were measured for six protozoanspecies (ciliates: Favella sp., Strombidinopsis acuminatum,Uronema sp.; heterotrophic dinoflagellates: Amphidinium sp.,Gymnodinium sp., Noctiluca scintillans) in laboratory batchculture experiments. Comparative growth data indicate that theprymnesiophyte Isochrysis galbana, the prasinophyte Mantoniellasquamata, two cryptophyte species and several autotrophic dinoflagellatespecies were suitable foods for these grazers. When grown onoptimized diets at 13C, maximum ciliate growth rates (range0.77–1.01 day–1 uniformly exceeded maximum heterotrophicdioflagellate growth rates (range 0.41–0.48 day–1).A compilation of published data demonstrates that this growthrate difference persists across a range of ciliate and dinoflagellatetaxa and cell sizes. Comparison of volume-specific ingestionrates and yields for the six species studied here showed thatthere was no single explanation for this growth rate disparity.Heterotrophic dinoflagellates exhibited both low ingestion ratesand, in one case, low yields; ciliates were able to achievehigher growth rates via either higher ingestion rates or higheryields, depending on ciliate species. Volume yield increasedover time throughout the exponential growth phase in nearlyall experiments, suggesting variation in response to changingfood concentrations or long-term acclimation to culture conditions.Higher maximum ciliate growth rates mean that these grazershave the potential to exercise tighter control over incipientblooms of their prey than do heterotrophic dinoflagellates.  相似文献   

18.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

19.
The chrysophyte Olisthodiscus luteus is not ingested by Synchaetacecilia. It inhibits the feeding on other, acceptable food atO. luteus densities as low as 50 cells ml–1 and reducessurvival and reproduction at O. luteus densities > 103 cellsml–1. The possible mechanisms and implications of thisphenomenon for the distribution and abundance of S. ceciliaare discussed.  相似文献   

20.
Feeding in predacious estuarine ciliates was investigated ina series of laboratory experiments using a new method of preylabeling which facilitates microscopic indentification of ingestedprey items. Ingestion rates of Mesodinium pulex, Euplotes vannusand E.woodruffi were estimated using the appearance, insidethe predator, of bacteriovorous ciliates (Metanophrys sp., Cyclidiumsp.and Pleuronema sp ) labeled with fluorescent microspheres. Preyremain motile and have presumably unaltered surface characteristics.Ingestion rates of log-growth phase predators increased withprey density. Mesodinium pulex ingested 0 15–0.32 cellsh–1 over a prey concentration of 60–2300 ml–1.Maximum ingestion rates of E. woodruffi and E. vannus were 4.5and 3.4 cells h–1 respectively, estimated at prey abundancesof 75 and 172 cells ml–1 respectively. Comparisons offeeding rates on prey of different sizes, and the effects ofstarvation, indicated that ingestion is likely limited by differentfactors in ‘raptorial’ (M pulex) and ‘filterfeeding’ (Euplotes spp.) predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号