首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel type of triple-stranded DNA structure was proposed by several groups to play a crucial role in homologous recognition between single- and double-stranded DNA molecules. In this still putative structure a duplex DNA was proposed to co-ordinate a homologous single strand in its major groove side. In contrast to the well-characterized pyrimidine-purine-pyrimidine triplexes in which the two like strands are antiparallel and which are restricted to poly-pyrimidine-containing stretches, the homology-specific triplexes would have like strands in parallel orientation and would not be restricted to any particular sequence provided that there is a homology between interacting DNA molecules. For many years the stereo-chemical possibility of forming homology-dependent three- or four-stranded DNA structures during the pairing stage of recombination reactions was seriously considered in published papers. However, only recently has there been a marked increase in the number of papers that have directly tested the formation of triple-stranded DNA structures during the actual pairing stage of the recombination reaction. Unfortunately the results of these tests are not totally clear cut; while some laboratories presented experimental evidence consistent with the formation of triplexes, others studying the same or very similar systems offered alternative explanations. The aim of this review is to present the current state of the central question in the mechanism of homologous recombination, namely, what kind of DNA structure is responsible for DNA homologous recognition. Is it a novel triplex structure or just a classical duplex?  相似文献   

2.
3.
4.
5.
Receptor mediated endocytosis has been proposed as the method of cellular iron uptake from transferrin (TF). However, the experimental evidence for endocytosis in every situation is found wanting. This is particularly true for the hepatocyte where an alternative mechanism of iron release at the cell surface can account for all iron uptake. It may be, that under appropriate physiological conditions (e.g. degree of iron saturation of TF) cells may take up iron by either an endocytotic or nonendocytotic mechanism.  相似文献   

6.
Transferrin receptor 1 (RD) binds iron-loaded transferrin and allows its internalization in the cytoplasm. Human serum transferrin also forms complexes with metals other than iron, including uranium in the uranyl form (UO2 2+). Can the uranyl-saturated transferrin (TUr2) follow the receptor-mediated iron-acquisition pathway? In cell-free assays, TUr2 interacts with RD in two different steps. The first is fast, direct rate constant, k 1 = (5.2 ± 0.8) × 106 M?1 s?1; reverse rate constant, k ?1 = 95 ± 5 s?1; and dissociation constant K 1 = 18 ± 6 μM. The second occurs in the 100-s range and leads to an increase in the stability of the protein–protein adduct, with an average overall dissociation constant K d = 6 ± 2 μM. This kinetic analysis implies in the proposed in vitro model possible but weak competition between TUr2 and the C-lobe of iron-loaded transferrin toward the interaction with R D.  相似文献   

7.
Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance1. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood.Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human2, 3. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons3, 4. However, the recent study from the Ikeda Laboratory2 revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.  相似文献   

8.
The ability to recognize kin based on genetic markers has been widely proposed as a mechanism to facilitate altruistic behaviour and inbreeding avoidance. Siblings are an important group of relatives to discriminate from unrelated individuals but present a problem, because siblings can share 0, 1 or 2 alleles at any single recognition locus. Here, we present a Bayesian model of kin recognition that defines the potential for genotypic information to convey kinship. Under the direct comparison model, where the signaller’s genotype is compared with that of the receiver, the odds ratio that a pair of individuals were siblings was substantially increased if they shared both alleles at a single locus, but only a minority of siblings were recognized; increasing the number of recognition loci used could not increase both the odds ratio and the proportion of siblings recognized. A maternal comparison model, where the signaller’s genotype is compared with that of the receiver’s mother, performed poorly when only a single recognition locus was considered, but became increasingly effective with more recognition loci. Nevertheless, incorporating partial‐matching information across multiple, independent loci are likely to be difficult. Further empirical work needs to establish the mechanistic basis of genetic kin recognition used by different taxa.  相似文献   

9.
Does the crystal structure of a protein accurately represent its structure in solution? Or does the crystallization process perturb the structure significantly? Although aware of the problem, most crystallographers would argue that the highly solvated and weakly held lattice in protein crystals is, in general, unlikely to shift ordered parts of the molecule. In the case of conformationally flexible proteins, however, there is the possibility that one form might be favoured over another. Several lines of evidence suggest that this might be the case for the crystal structure of liganded Hb, although conflicting data exist.  相似文献   

10.
11.
12.
In the 'omic' era, hundreds of genomes are available for protein sequence analysis, and some 30 per cent of all sequences are of membrane proteins. Unlike globular proteins, a 3D model for membrane proteins can hardly be computed starting from the sequence. Why is this so? What can we really compute and with what reliability? These and other matters are outlined.  相似文献   

13.
14.
15.
In the last few years, three laboratories have reported three entirely different crystallographic models for the L photointermediate of bacteriorhodopsin. All are from X-ray diffraction of illuminated crystals that contain L in photostationary states created at similar cryogenic temperatures. This article compares the models and their implications, the crystallographic statistics and the methods used to derive them, as well as their agreement with non-crystallographic information.  相似文献   

16.
The telomeres are the nucleoproteic structures present at the ends of eukaryotic chromosomes. One can compare them to the protective ends of a shoelace; when the ends get eroded, the shoelace disintegrates and we dispose of it. The same thus applies to the chromosomes; when telomeres reach a critical threshold for function, the genome becomes unstable and the cell senesces. Therefore, telomeres, and particularly their terminal DNA structures, are critical for the integrity of the genome.  相似文献   

17.
The nuclear envelope has recently become the object of intense scrutiny because it is the site of nuclear transport and is possibly involved in the organization of the interphase genome, thereby affecting gene expression. The major structural support for the nuclear envelope is the nuclear lamina, composed of the nuclear lamin proteins. They lie on the surface of the inner nuclear membrane and are in direct contact with the chromatin at the edge of the nucleus. The structure of the nuclear lamin proteins has recently been deduced from their cDNAs and shown to have remarkable homologies to the family of cytoplasmic intermediate filaments. However, the lamin proteins have been found to depolymerize in response to metaphase-specific phosphorylation events, and reassemble around daughter chromosomes at the completion of cell division. Little is known of the mechanisms of these dynamics, nor of other post-translational modifications evident in these proteins. In addition, we have as yet no concrete idea of the function of these highly conserved proteins in the cell. This review will summarize our present knowledge of nuclear lamin structure and the new experimental approaches designed to elucidate their function.  相似文献   

18.
An interspecific marker of mammalian erythroid cells, which was called the erythroblast antigen, was identified in 1974, using polyclonal monospecific antibodies. Further studies have demonstrated the expression of this antigen in a variety of nonhemopoietic organs and tissues, which have the following common feature: they have a barrier location; that is, they are located at the boundary. It has been proposed that the erythroblast antigen participates directly or indirectly in the transport of various substances and specifically transport of iron. The present review deals with this topic.  相似文献   

19.
The vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and plays a central role in the biological actions of vitamin D. VDR regulates the expression of numerous genes involved in calcium/phosphate homeostasis, cellular proliferation and differentiation, and immune response, largely in a ligand-dependent manner. To understand the global function of the vitamin D system in physiopathological processes, great effort has been devoted to the detection of VDR in various tissues and cells, many of which have been identified as vitamin D targets. This review focuses on the tissue- and cell type-specific distribution of VDR throughout the body.  相似文献   

20.
Chromatin fiber structure: Where is the problem now?   总被引:3,自引:0,他引:3  
The structure of the "30 nm chromatin fiber", as observed in vitro, has been a matter of controversy for 30 years. Recent studies with new and more powerful techniques give some promise for resolution. However, this will not necessarily inform us as to the in vivo structure, which may be both heteromorphic and dynamic. In this chapter, we briefly review the older conjectures and some more recent studies of special interest. We attempt to point out the remaining contradictions and hopeful lines of future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号