首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Transferrin receptor 1 (RD) binds iron-loaded transferrin and allows its internalization in the cytoplasm. Human serum transferrin also forms complexes with metals other than iron, including uranium in the uranyl form (UO2 2+). Can the uranyl-saturated transferrin (TUr2) follow the receptor-mediated iron-acquisition pathway? In cell-free assays, TUr2 interacts with RD in two different steps. The first is fast, direct rate constant, k 1 = (5.2 ± 0.8) × 106 M?1 s?1; reverse rate constant, k ?1 = 95 ± 5 s?1; and dissociation constant K 1 = 18 ± 6 μM. The second occurs in the 100-s range and leads to an increase in the stability of the protein–protein adduct, with an average overall dissociation constant K d = 6 ± 2 μM. This kinetic analysis implies in the proposed in vitro model possible but weak competition between TUr2 and the C-lobe of iron-loaded transferrin toward the interaction with R D.  相似文献   

3.
Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance1. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood.Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human2, 3. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons3, 4. However, the recent study from the Ikeda Laboratory2 revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.  相似文献   

4.
The ability to recognize kin based on genetic markers has been widely proposed as a mechanism to facilitate altruistic behaviour and inbreeding avoidance. Siblings are an important group of relatives to discriminate from unrelated individuals but present a problem, because siblings can share 0, 1 or 2 alleles at any single recognition locus. Here, we present a Bayesian model of kin recognition that defines the potential for genotypic information to convey kinship. Under the direct comparison model, where the signaller’s genotype is compared with that of the receiver, the odds ratio that a pair of individuals were siblings was substantially increased if they shared both alleles at a single locus, but only a minority of siblings were recognized; increasing the number of recognition loci used could not increase both the odds ratio and the proportion of siblings recognized. A maternal comparison model, where the signaller’s genotype is compared with that of the receiver’s mother, performed poorly when only a single recognition locus was considered, but became increasingly effective with more recognition loci. Nevertheless, incorporating partial‐matching information across multiple, independent loci are likely to be difficult. Further empirical work needs to establish the mechanistic basis of genetic kin recognition used by different taxa.  相似文献   

5.
6.
In the 'omic' era, hundreds of genomes are available for protein sequence analysis, and some 30 per cent of all sequences are of membrane proteins. Unlike globular proteins, a 3D model for membrane proteins can hardly be computed starting from the sequence. Why is this so? What can we really compute and with what reliability? These and other matters are outlined.  相似文献   

7.
8.
9.
In the last few years, three laboratories have reported three entirely different crystallographic models for the L photointermediate of bacteriorhodopsin. All are from X-ray diffraction of illuminated crystals that contain L in photostationary states created at similar cryogenic temperatures. This article compares the models and their implications, the crystallographic statistics and the methods used to derive them, as well as their agreement with non-crystallographic information.  相似文献   

10.
The telomeres are the nucleoproteic structures present at the ends of eukaryotic chromosomes. One can compare them to the protective ends of a shoelace; when the ends get eroded, the shoelace disintegrates and we dispose of it. The same thus applies to the chromosomes; when telomeres reach a critical threshold for function, the genome becomes unstable and the cell senesces. Therefore, telomeres, and particularly their terminal DNA structures, are critical for the integrity of the genome.  相似文献   

11.
The vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and plays a central role in the biological actions of vitamin D. VDR regulates the expression of numerous genes involved in calcium/phosphate homeostasis, cellular proliferation and differentiation, and immune response, largely in a ligand-dependent manner. To understand the global function of the vitamin D system in physiopathological processes, great effort has been devoted to the detection of VDR in various tissues and cells, many of which have been identified as vitamin D targets. This review focuses on the tissue- and cell type-specific distribution of VDR throughout the body.  相似文献   

12.
The frequency of occurrence of nearest neighbour residue pairs on adjacent antiparallel (βA) and parallel (βP) strands is obtained from 30 known protein structures. The specificity of interstrand recognition due to such pairing as a factor in the folding of β-sheets is studied by statistical methods. Residues of sufficiently high count for statistical analysis are treated individually while the rest are combined into small groups of similar size, polarity, and/or genetic exchangeability. The hypothesis of specific recognition between individuals and small groups is contrasted with the alternative hypothesis of non-specific recognition between broad classes (hydrophobia, neutral, polar) of residues. A χ2 test of pair correlations favours specific recognition against non-specific recognition with a high level of confidence. The largest and most significant correlations are: Ser/Thr (1.9 ± 0.3), Ile/Val (1.7 ± 0.3) and Lys-Arg/Asp-Gln (1.8 ± 0.3) in βA, and Ile/Leu (1.9 ± 0.4) in βP. The pair Gly/Gly never occurs in any β-sheet. The specific residue-pair correlations derived here may be useful in statistical prediction methods of protein tertiary structure.  相似文献   

13.
Chromatin fiber structure: Where is the problem now?   总被引:3,自引:0,他引:3  
The structure of the "30 nm chromatin fiber", as observed in vitro, has been a matter of controversy for 30 years. Recent studies with new and more powerful techniques give some promise for resolution. However, this will not necessarily inform us as to the in vivo structure, which may be both heteromorphic and dynamic. In this chapter, we briefly review the older conjectures and some more recent studies of special interest. We attempt to point out the remaining contradictions and hopeful lines of future research.  相似文献   

14.
Brylinski M  Skolnick J 《Proteins》2008,70(2):363-377
It is well known that ligand binding and release may induce a wide range of structural changes in a receptor protein, varying from small movements of loops or side chains in the binding pocket to large‐scale domain hinge‐bending and shear motions or even partial unfolding that facilitates the capture and release of a ligand. An interesting question is what in general are the conformational changes triggered by ligand binding? The aim of this work is analyze the magnitude of structural changes in a protein resulting from ligand binding to assess if the state of ligand binding needs to be included in template‐based protein structure prediction algorithms. To address this issue, a nonredundant dataset of 521 paired protein structures in the ligand‐free and ligand‐bound form was created and used to estimate the degree of both local and global structure similarity between the apo and holo forms. In most cases, the proteins undergo relatively small conformational rearrangements of their tertiary structure upon ligand binding/release (most root‐mean‐square‐deviations from native, RMSD, are <1 Å). However, a clear difference was observed between single‐ and multiple‐domain proteins. For the latter, RMSD changes greater than 1 Å and sometimes larger were found for almost 1/3 of the cases; these are mainly associated with large‐scale hinge‐bending movements of entire domains. The changes in the mutual orientation of individual domains in multiple‐domain proteins upon ligand binding were investigated using a mechanistic model based on mass‐weighted principal axes as well as interface buried surface calculations. Some preferences toward the anticipated mechanism of protein domain movements are predictable based on the examination of just the ligand‐free structural form. These results have applications to protein structure prediction, particularly in the context of protein domain assembly, if additional information concerning ligand binding is exploited. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
The peripheral nervous system (PNS) displays structural barriers and a lack of lymphatic drainage which strongly limit the access of molecules and cells from the immune system. In addition, the PNS has the ability to set up some specific mechanisms of immune protection to limit the pathogenicity of inflammation processes following insults by pathogens or inflammatory autoimmune diseases like the Guillain-Barré syndrome. Schwann cells are among the most prominent cells which can display immune capabilities in the PNS. Numerous in vitro studies have shown that Schwann cells were indeed able to display a large repertoire of properties, ranging from the participation to antigen presentation, to secretion of pro- and anti-inflammatory cytokines, chemokines and neurotrophic factors. In vivo studies have confirmed the immune capabilities of Schwann cells. The aim of this review is to present how Schwann cells can participate to the initiation, the regulation and the termination of the immune response in the light of the recent discovery of the Schwann cell expression of purinergic P2X7 receptors.  相似文献   

18.
19.
This paper explores the implications of certain new developments in cell biology upon neuroscience. Until recently it was thought that neurotransmitters and neuromodulators had only one function, which was to stimulate their specific receptors at the cell surface. From here on, all activity was supposed to be effected by postsynaptic cascades. The discovery that membrane components, particularly G-protein-linked receptors, are not static but are subject to a massive and complex process of continual endocytosis, processing in the endosome system and recycling back to the external membrane, raises the question of its functional significance. In addition, it has been found that many neuromodulators such as polypeptides have their main locus of action inside the postsynaptic neuron. This review covers the role of the endocytic mechanism on receptor desensitization and resensitization, synaptic reorganization and plasticity synaptic scaling and the possible repair of oxidative damage. The possible involvement of this system in Alzheimer's disease is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号