首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five major neutral glycolipids, GL-1-GL-5, were isolated from the the mouse small intestine. Their structures and distribution were determined by permethylation analysis, sequential degradation with exoglycosidases and/or immunohistochemistry. The molar ratio of GL-1, GL-2, GL-3, GL-4 and Gl-5 in the whole small intestine was 1:0.04:0.03:0.42:0.02. The structures of GL-1 and GL-4 present in epithelial cells were reported previously to be glucosyl ceramide and asialo GM1, respectively (Umesaki, Y., Suzuki, A., Kasama, T., Tohyama, K., Mutai, M. and Yamakawa, T. (1981) J. Biochem. 90, 1731–1738). GL-5, also present in the epithelial cells, was fucosyl asialo GM1, and fucose was shown to be linked to terminal galactose of asialo GM1 in the manner of α(1–2) bond. GL-2 and GL-3, present in the residual tissue after scraping the mucosa, were determined to be globoside and Forssman glycolipid, respectively. Both globoside and Forssman glycolipid of the non-epithelial tissue had non-hydroxy fatty acid (C16–C24) in combination with sphingosine (C18) as the ceramide components, in contrast with the ceramide structures of the epithelial glycolipids, which contained α-hydroxy fatty acids in combination with phytosphingosine. Immunohistochemical staining using anti-glycolipid antibodies confirmed the distribution of asialo GM1 and fucosyl asialo GM1, and Forssman glycolipid in the epithelial and non-epithelial tissue, respectively.  相似文献   

2.
The epithelial cells and the non-epithelial residue from large intestine of two inbred rat strains were separated and the glycosphingolipids characterized in comparison with earlier detailed data from small intestine of the same strains. Total acid and non-acid glycolipids were prepared and the non-acid glycolipids were further fractionated into subgroups as acetylated derivatives on silicic acid. The fractions obtained were characterized mainly by thin-layer chromatography, including binding of monoclonal anti-A and anti-B antibody to the chromatogram, and by direct-inlet mass spectrometry after derivatization. This combined technology allowed an overall conclusion from a small number of animals concerning relative amounts of glycolipids, microheterogeneity of blood group glycolipids and carbohydrate sequence and lipophilic components of major species of each subfraction. As for the small intestine, the two separated compartments differed distinctly in composition, with blood group fucolipids being confined to the epithelial cells, and a series of glycolipids with probably internal Galα being restricted to the non-epithelial part. The main difference between large and small intestine concerned fucolipids of the epithelium. Three blood group B active glycolipids with four, six and seven sugars were detected which were absent from the small intestine. The four-sugar glycolipid was a major glycolipid with the structure Galα1 → 3Gal(2 ← 1αFuc)β1 → 4Glcβ1 → 1Cer, as reported before. The six-sugar glycolipid was shown by mass spectrometry and NMR spectroscopy to have the probable structure Galα1 → 3Ga1(2 → αFuc)β1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1Cer. The seven-sugar glycolipid had an additional fucose linked to N-acetylhexosamine, as shown by mass spectrometry. Three blood group A active glycolipids with four, six and seven sugars were found in both rat strains, with sequences analogous to the B glycolipids but with a terminal GalNAc instead of Gal. The four and six-sugar blood group A compounds, but not the seven-sugar glycolipid, have been found before in the small intestine of one of the rat strains. In the small intestine, on the other hand, a branched-chain twelve-sugar blood group A active glycolipid has been found which was absent from the large intestine. Therefore large intestine of both rat strains expressed glycolipid-based blood group A and B activity, while small intestine lacked B activity and showed A activity only in one of the strains. Quantitatively the major glycolipids of the epithelial cells of large intestine were monoglycosylceramides (glucosylceramides, and smaller amounts of galactosylceramides which were absent from small intestinal epithelium) and tetraglycosylceramides (including the A and B active species and a tetrahexosylceramide). The major lipophilic components of the epithelial cell glycolipids were phytosphingosine and long-chain hydroxy fatty acids.  相似文献   

3.
Small intestinal epithelial cells (enterocytes) were isolated from specimens obtained at operation from four human individuals with different blood group ABO, Lewis, and secretor phenotypes. The non-acid glycolipids were isolated and characterized by thin-layer chromatography, mass spectrometry, and proton NMR spectroscopy and for reactivity with monoclonal antibodies on thin-layer chromatograms. Monohexosylceramides and blood group ABH (type 1 chain) and Lewis glycolipids with 5-7 sugar residues were the major compounds present in all cases, and the expression of the major blood group glycolipids was in agreement with the ABO, Lewis, and secretor phenotype of the individual donors. Small amounts of more complex glycolipids with up to 10 sugar residues were identified by mass spectrometry in all cases. In addition, small amounts of lactotetraosylceramide, a blood group H-active triglycosylceramide with the structure of Fuc alpha 1-2Gal-Hex-Cer (where Fuc is fucose, Hex is hexose, and Cer is ceramide), and dihexosylceramides were identified in some cases. Globotriaosyl- and globotetraosylceramides were absent from the epithelial cells. Small amounts of Leb-active glycolipids in blood group OLe(a+b-), non-secretor and OLe(a-b-), secretor individuals as well as trace amounts of type 2 carbohydrate chain compounds in all individuals were detected by specific monoclonal antibodies.  相似文献   

4.
5.
Two glycolipids of dog small intestine, one with Forssman activity and one with Leb-like activity, have been characterized by mass spectrometry of methylated, and methylated and reduced (LiAlH4) derivatives. The Forssman glycolipid was conclusively shown to be a pentaglycosylceramide with the carbohydrate sequence hexosamine-hexosamine-hexose-hexose-hexose-ceramide, and with sphingosine (dihydroxy base) as major long-chain base and normal fatty acids as the only fatty acids. The Leb-like glycolipid was a hexaglycosyl-ceramide with sequence fucose-hexose-[fucose-] hexosamine-hexose-hexose-ceramide and with phytosphingosine (trihydroxy base) as major long-chain base and only 2-hydroxy fatty acids as fatty acids. The difference of two hydroxy groups in the ceramide between the two glycolipids may be related to a different tissue localization. As shown by immunofluorescense study the Forssman activity was associated with the lamina propria and the Leb-like activity to the glandular epithelium of dog small intestine.  相似文献   

6.
We have previously described the cloning of Hep27, a short-chain dehydrogenase/reductase, which is synthesized in human hepatoblastoma HepG2 cells following growth arrest induced by butyrate treatment. The present report describes the cloning, the structure and the physical and cytogenetic mapping of the gene coding for Hep27. We also show that Hep27 is synthesized in a limited number of human normal tissues and that it is localized in the nuclei and cytoplasm of HepG2 cells.  相似文献   

7.
8.
Summary Formaldehyde-fixed human erythrocytes were extracted with sodium dodecyl sulfate and with three other solvent systems, at least two of which are known to remove glycolipids quantitatively. The extracted cells possessed the ability to absorb the ABO blood group-specific antibody at about onethird the level of unextracted cells. Treatment of fresh cells with pronase also reduced the ability of the cells to absorb the antibody, further supporting the presence of ABO blood group active glycoprotein in the membrane. Trypsinization of red cells, while removing PAS-1 and partly PAS-2, did not lead to any decrease in the activity. Papainization also did not diminish the activity, although PAS-1, PAS-2, and PAS-3 were removed from the cells. Thus, both glycolipid and glycoprotein contribute to ABO antigens of erythrocytes. Also, none of the three major glycoproteins of the membrane bears this activity.Presented at the Department of Atomic Energy Symposium on Receptors in Biological Systems held at Calcutta, India, during March 21–23, 1978.  相似文献   

9.
10.
CD20 and the beta subunit of the high affinity receptor for IgE (FcepsilonRIbeta) are related four-transmembrane molecules that are expressed on the surface of hematopoietic cells and play crucial roles in signal transduction. Herein, we report the identification and characterization of a human gene, TETM4, that encodes a novel four-transmembrane protein related to CD20 and FcepsilonRIbeta. The predicted TETM4 protein is 200 amino acids and contains four putative transmembrane regions, N- and C-terminal cytoplasmic domains, and three inter-transmembrane loop regions. TETM4 shows 31.0 and 23.2% overall identity with CD20 and FcepsilonRIbeta respectively, with the highest identity in the transmembrane regions, whereas the N- and C-termini and inter-transmembrane loops are more divergent. Northern blot and RT-PCR analysis suggest that TETM4 mRNA has a highly restricted tissue distribution, being expressed selectively in the testis. Using fluorescence in situ hybridization and radiation hybrid analysis, the TETM4 gene has been localized to chromosome 11q12. The genes for CD20 and FcepsilonRIbeta have also been mapped to the same region of chromosome 11 (11q12-13.1), suggesting that these genes have evolved by duplication to form a family of four-transmembrane genes. TETM4 is the first nonhematopoietic member of the CD20/FcepsilonRIbeta family, and like its hematopoietic-specific relatives, it may be involved in signal transduction as a component of a multimeric receptor complex.  相似文献   

11.
12.
Adipose tissue inflammation in obesity is a major factor leading to cardiovascular disease and type 2 diabetes.12/15 lipoxygenases (ALOX) play an important role in the generation of inflammatory mediators, insulin resistance and downstream immune activation in animal models of obesity. However, the expression and roles of 12/15ALOX isoforms, and their cellular sources in human subcutaneous (sc) and omental (om) fat in obesity is unknown. The objective of this study was to examine the gene expression and localization of ALOX isoforms and relevant downstream cytokines in subcutaneous (sc) and omental (om) adipose tissue in obese humans. Paired biopsies of sc and om fat were obtained during bariatric surgeries from 24 morbidly obese patients. Gene and protein expression for ALOX15a, ALOX15b and ALOX 12 were measured by real-time PCR and western blotting in adipocytes and stromal vascular fractions (SVF) from om and sc adipose tissue along with the mRNA expression of the downstream cytokines IL-12a, IL-12b, IL-6, IFNγ and the chemokine CXCL10. In a paired analysis, all ALOX isoforms, IL-6, IL-12a and CXCL10 were significantly higher in om vs. sc fat. ALOX15a mRNA and protein expression was found exclusively in om fat. All of the ALOX isoforms were expressed solely in the SVF. Further fractionation of the SVF in CD34+ and CD34- cells indicated that ALOX15a is predominantly expressed in the CD34+ fraction including vascular and progenitor cells, while ALOX15B is mostly expressed in the CD34- cells containing various leucocytes and myeloid cells. This result was confirmed by immunohistochemistry showing exclusive localization of ALOX15a in the om fat and predominantly in the vasculature and non-adipocyte cells. Our finding is identifying selective expression of ALOX15a in human om but not sc fat. This is a study showing a major inflammatory gene exclusively expressed in visceral fat in humans.  相似文献   

13.
Amiloride-sensitive Na(+) channels belonging to the recently discovered NaC/DEG family of genes have been found in several human tissues including epithelia and central and peripheral neurons. We describe here the molecular cloning of a cDNA encoding a novel human amiloride-sensitive Na(+) channel subunit that is principally expressed in the small intestine and has been called hINaC (human intestine Na(+) channel). This protein is similar to the recently identified rodent channel BLINaC and is relatively close to the acid sensing ion channels (ASICs) (79 and 29% amino acid identity, respectively). ASICs are activated by extracellular protons and probably participate in sensory neurons to nociception linked to tissue acidosis. hINaC is not activated by lowering the external pH but gain-of-function mutations can be introduced and reveal when expressed in Xenopus oocytes, an important Na(+) channel activity which is blocked by amiloride (IC(50)=0.5 microM). These results suggest the existence of a still unknown physiological activator for hINaC (e.g. an extracellular ligand). The presence of this new amiloride-sensitive Na(+) channel in human small intestine probably has interesting physiological as well as physiopathological implications that remain to be clarified. The large activation of this channel by point mutations may be associated with a degenerin-like behavior as previously observed for channels expressed in nematode mechanosensitive neurons. The hINaC gene has been mapped on the 4q31.3-q32 region of the human genome.  相似文献   

14.
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and alpha-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and alpha-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes.  相似文献   

15.
16.
This study describes the broad tissue distribution and subcellular localization of Drosophila Zasp52, which is related to the large family of ALP (α-actinin associated protein)/Enigma PDLIM (PDZ and LIM domain) proteins of vertebrates. Results demonstrate that ZCL423 is a protein trap insertion in the Zasp52 locus tagging multiple endogenous splice isoforms with GFP. While Zasp52 has been previously characterized in muscle tissues primarily, visualization of GFP fluorescence in Zasp52 protein trap lines revealed expression in many nonmuscle tissues including the central nervous system, secretory glands, and epithelial tissues constituting the embryonic epidermis, the somatic follicle cell layer encapsulating the germline during oogenesis, and imaginal disc precursors to the adult body. In epithelial cells, Zasp52 typically accumulated basally, adjacent to integrin adhesion sites, and apically along adherens junctions, particularly enriched near junctional vertices of multicellular interfaces. Also Zasp52 showed polarized accumulation at the leading edge of migrating cell populations and morphogenetic boundaries similarly enriched for myosin. As such, Zasp52 GFP protein traps may be useful molecular markers for dynamic epithelial rearrangements. Moreover, the pattern of Zasp52 expression within nonmuscle tissues reveals potential functional roles in cell–cell and cell–matrix adhesion, specifically at sites of increased actomyosin contractile tension. In these contexts, the investigation of Zasp52 may provide insights into the functions of numerous PDLIM proteins of the metazoan lineages.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号