首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chromosomal passenger proteins aurora-B, survivin, and inner centromere protein (INCENP) have been implicated in coordinating chromosome segregation with cell division. This work describes the interplay between aurora, survivin, and INCENP orthologs in the fission yeast Schizosaccharomyces pombe and defines their roles in regulating chromosome segregation and cytokinesis. We describe the cloning and characterization of the aurora-related kinase gene ark1(+), demonstrating that it is an essential gene required for sister chromatid segregation. Cells lacking Ark1p exhibit the cut phenotype, DNA fragmentation, and other defects in chromosome segregation. Overexpression of a kinase-defective version of Ark1, Ark1-K147R, inhibits cytokinesis, with cells exhibiting an elongated, multiseptate phenotype. Ark1p interacts physically and/or genetically with the survivin and INCENP orthologs Bir1p and Pic1p. We identified Pic1p in a two-hybrid screen for Ark1-K147R interacting partners and went on to map domains in both proteins that mediate their binding. Pic1p residues 925-972 are necessary and sufficient for Ark1p binding, which occurs through the kinase domain. As with Ark1-K147R, overexpression of Ark1p-binding fragments of Pic1p leads to multiseptate phenotypes. We also provide evidence that the dominant-negative effect of Ark1-K147R requires Pic1p binding, indicating that the formation of Ark1p-Pic1p complexes is required for the execution of cytokinesis.  相似文献   

2.
The Saccharomyces cerevisiae chromosomal passenger proteins Ipl1 (Aurora B) and Sli15 (INCENP) are required for the tension checkpoint, but the role of the third passenger, Bir1, is controversial. We have isolated a temperature-sensitive mutant (bir1-107) in the essential C-terminal region of Bir1 known to be required for binding to Sli15. This allele reveals a checkpoint function for Bir1. The mutant displays a biorientation defect, a defective checkpoint response to lack of tension, and an inability to detach mutant kinetochores. Ipl1 localizes to aberrant foci when Bir1 localization is disrupted in the bir1-107 mutant. Thus, one checkpoint role of Bir1 is to properly localize Ipl1 and allow detachment of kinetochores. Quantitative analysis indicates that the chromosomal passengers colocalize with kinetochores in G1 but localize between kinetochores that are under tension. Bir1 localization to kinetochores is maintained in an mcd1-1 mutant in the absence of tension. Our results suggest that the establishment of tension removes Ipl1, Bir1, and Sli15, and their kinetochore detachment activity, from the vicinity of kinetochores and allows cells to proceed through the tension checkpoint.  相似文献   

3.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature.  相似文献   

4.
In budding yeast, the kinetochore scaffold complex centromere binding factor 3 (CBF3) is required to form kinetochores on centromere DNA and to allow proper chromosome segregation. We have previously shown that SKP1 and SGT1 balance the assembly and turnover of CBF3 complexes, a cycle that we suggest is independent of its role in chromosome segregation (Rodrigo-Brenni, M.C., S. Thomas, D.C. Bouck, and K.B. Kaplan. 2004. Mol. Biol. Cell. 15:3366-3378). We provide evidence that this cycle contributes to a second, kinetochore-independent function of CBF3. In this study, we show that inhibiting the assembly of CBF3 causes disorganized septins and defects in cell polarity that give rise to cytokinesis failures. Specifically, we show that septin ring separation and disassembly is delayed in anaphase, suggesting that CBF3 regulates septin dynamics. Only mutations that affect the CBF3 cycle, and not mutants in outer kinetochore subunits, cause defects in septins. These results demonstrate a novel role for CBF3 in regulating cytokinesis, a role that is reminiscent of passenger proteins. Consistent with this possibility, we find that CBF3 interacts with Bir1p, the homologue of the passenger protein Survivin. Mutants in Bir1p similarly affect septin organization, leading us to propose that CBF3 and Bir1p act as passenger proteins to coordinate chromosome segregation with cytokinesis.  相似文献   

5.
Kinetochore-passenger complexes in metazoans have been proposed to coordinate the segregation of chromosomes in anaphase with the induction of cytokinesis. Passenger protein homologues in the budding yeast Saccharomyces cerevisiae play a critical role early in mitosis, ensuring proper biorientation of kinetochore-microtubule attachments. Our recent work has implicated the passenger protein Bir1p (Survivin) and the inner kinetochore complex centromere binding factor 3 (CBF3) in the regulation of septin dynamics during anaphase. Here, we present data that is consistent with there being multiple passenger protein complexes. Our data show that Bir1p links together a large passenger complex containing Ndc10p, Sli15p (INCENP), and Ipl1p (Aurora B) and that the interaction between Bir1p and Sli15p is specifically involved in regulating septin dynamics during anaphase. Neither conditional alleles nor mutants of BIR1 that disrupt the interaction between Bir1p and Sli15p resulted in mono-attached kinetochores, suggesting that the Bir1p-Sli15p complex functions in anaphase and independently from Sli15p-Ipl1p complexes. We present a model for how discrete passenger complexes coordinate distinct aspects of mitosis.  相似文献   

6.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature. Received: 18 November 1998 / Accepted: 17 March 1999  相似文献   

7.
GINS is a protein complex found in eukaryotic cells that is composed of Sld5p, Psf1p, Psf2p, and Psf3p. GINS polypeptides are highly conserved in eukaryotes, and the GINS complex is required for chromosomal DNA replication in yeasts and Xenopus egg. This study reports purification and biochemical characterization of GINS from Saccharomyces cerevisiae. The results presented here demonstrate that GINS forms a 1:1 complex with DNA polymerase epsilon (Pol epsilon) holoenzyme and greatly stimulates its catalytic activity in vitro. In the presence of GINS, Pol epsilon is more processive and dissociates more readily from replicated DNA, while under identical conditions, proliferating cell nuclear antigen slightly stimulates Pol epsilon in vitro. These results strongly suggest that GINS is a Pol epsilon accessory protein during chromosomal DNA replication in budding yeast. Based on these results, we propose a model for molecular dynamics at eukaryotic chromosomal replication fork.  相似文献   

8.
The inhibitor of apoptosis (IAP) family of proteins contains a subset of members characterized by the presence of highly conserved baculoviral IAP repeat (BIR) domains. Recent work has shown that some of these BIR-domain proteins play a prominent role in the regulation of cell division, in particular at the stage of chromosome segregation and cytokinesis. We and others have shown that the Schizosaccharomyces pombe BIR-domain protein, Bir1p/Pbh1p/Cut17p, is important for the regulation of mitosis. Here we further characterize S. pombe Bir1p using methods of cell biology and genetics. We show that Bir1p is dispersed throughout the nucleus during the cell cycle. In addition, a significant part of Bir1p is also detected at the kinetochores and the spindle midzone during mitosis and meiosis. Time-lapse microscopy studies suggest that Bir1p relocates from the kinetochores to the spindle at the end of anaphase A. Bir1p colocalizes with the S. pombe Aurora kinase homolog Aim1p, a protein essential for mitosis, at the kinetochores as well as the spindle midzone during mitosis, and functional Bir1p is essential for localization of Aim1p to the kinetochores and the spindle midzone. Analyses of bir1 conditional mutants revealed that Bir1p is essential for chromosome condensation during mitosis. In addition, anaphase cells show the presence of lagging chromosomes and a defect in spindle elongation. We conclude that Bir1p is important for multiple processes that occur during mitosis in S. pombe.  相似文献   

9.
Conditional mutants are a vital tool for analysis of gene function. The use of temperature-sensitive mutants in Schizosaccharomyces pombe has significantly promoted understanding of many cellular processes. A portable heat-inducible amino-terminal degron (N-degron) for conditional degradation of a gene product has been previously described in Saccharomyces cerevisiae. This paper describes the adaptation of the N-degron method to create temperature-sensitive (ts) mutants in S. pombe. A ts derivative of the mouse dihydrofolate reductase with an amino-terminal arginine (Arg-DHFR(ts)) previously described in S. cerevisiae was fused to the N-terminus of Bir1p, a nuclear protein involved in mitotic chromosome segregation in S. pombe. This fusion allele, referred to as bir1-td, conferred a chromosome segregation defect at 36 degrees C, as with previously described alleles of bir1. Deletion of the S. pombe E3 ubiquitin ligase (N-recognin), Ubr11p, reversed the temperature-dependent lethality of bir1-td, providing evidence for N-end rule mediated destruction of Bir1p. The methods we describe should therefore facilitate analysis of essential genes in fission yeast for which conditionally lethal mutants are unavailable.  相似文献   

10.
11.
Accurate chromosome segregation requires the capture of sister kinetochores by microtubules from opposite spindle poles prior to the initiation of anaphase, a state termed chromosome biorientation. In the budding yeast Saccharomyces cerevisiae, the conserved protein kinase Ipl1 (Aurora B in metazoans) is critical for ensuring correct chromosomal alignment. Ipl1 associates with its activators Sli15 (INCENP), Nbl1 (Borealin), and Bir1 (Survivin), but while Sli15 clearly functions with Ipl1 to promote chromosome biorientation, the role of Bir1 has been uncertain. Using a temperature-sensitive bir1 mutant (bir1-17), we show that Bir1 is needed to permit efficient chromosome biorientation. However, once established, chromosome biorientation is maintained in bir1-17 cells at the restrictive temperature. Ipl1 is partially delocalized in bir1-17 cells, and its protein kinase activity is markedly reduced under nonpermissive conditions. bir1-17 cells arrest normally in response to microtubule depolymerization but fail to delay anaphase when sister kinetochore tension is reduced. Thus, Bir1 is required for the tension checkpoint. Despite their robust mitotic arrest in response to nocodazole, bir1-17 cells are hypersensitive to microtubule-depolymerizing drugs and show a more severe biorientation defect on recovery from nocodazole treatment. The role of Bir1 therefore may become more critical when spindle formation is delayed.Accurate chromosome segregation during anaphase is vital for ensuring the maintenance of genome integrity during cell division and, in turn, depends critically on the correct attachment of sister chromatids to kinetochore microtubules. For high-fidelity chromosome segregation, kinetochores must capture spindle microtubules such that sister chromatids are connected to opposite spindle poles (termed amphitelic attachment or chromosome biorientation), ensuring that they are pulled in opposite directions during the subsequent anaphase.In the budding yeast Saccharomyces cerevisiae, the majority of sister chromatids remain attached to microtubules from a single pole (mono-oriented) without the intervention of a correction mechanism to promote amphitelic attachment (36), a key element of which is the Ipl1 protein kinase. Ipl1 has been proposed to promote the detachment of incorrect microtubule-kinetochore connections so that correct attachments subsequently can form (35). In the absence of Ipl1 function, at the point of anaphase onset around two-thirds of sister chromatids remain mono-oriented, attached to microtubules originating from a single pole to which they then cosegregate (35). Kinetochore proteins such as Dam1 and Ndc80 have been proposed as key Ipl1 substrates for their role in promoting chromosome biorientation (6, 41). Ipl1 kinase also is required for cells to activate the spindle checkpoint in the absence of tension on kinetochore-microtubule attachments, and hence ipl1 mutant cells fail to delay anaphase despite their many mono-oriented chromosomes (2). Depending on the circumstances, the checkpoint role of Ipl1 involves either the generation of unattached kinetochores (26) or the phosphorylation of the checkpoint protein Mad3 (19). Ipl1 also is required in the absence of the BimC family kinesin Cin8p, probably reflecting a role in spindle assembly (9, 21), and is involved in regulating spindle disassembly following anaphase (5).Ipl1 kinase is highly conserved, and its metazoan ortholog (Aurora B) is involved in both chromosome biorientation and the spindle assembly checkpoint, forming part of the chromosomal passenger complex that also contains INCENP, Survivin, and Borealin (27, 40). The chromosomal passenger complex is so called because although these proteins colocalize throughout the cell cycle, their location changes dynamically from the chromosome arms in G1 to centromeres in prometaphase and finally to the central spindle in anaphase. Such coordinated behavior is consistent with the recent crystal structure of the complex between INCENP, Survivin, and Borealin, in which they interact via tightly entwined helical domains (16).In budding yeast, Ipl1 interacts with Sli15, Bir1, and Nbl1, which have been proposed to be orthologs of INCENP, Survivin, and Borealin, respectively (6, 18). All three proteins are the products of essential genes. Like INCENP, Sli15 has a conserved C-terminal domain (the IN-box) that is required for Ipl1 kinase activation, and sli15 mutants have a phenotype that is very similar to that of ipl1 mutants (17, 18). Although yeast cells with reduced Bir1 function show chromosome instability, the first-described bir1 mutants failed to reveal a chromosome biorientation defect but instead conferred defects in septin dynamics during anaphase (38). Bir1 interacts with Ndc10 and is responsible for taking Ndc10 to the anaphase spindle (38, 42, 43), a role that may be linked to this septin defect (4). Yeast Bir1 is much larger than its metazoan counterpart (Survivin) and shows little sequence conservation outside the conserved BIR domain, yet this region is nonessential in yeast (42) and therefore unlikely to be involved in chromosome biorientation. Conversely, metazoan Borealin proteins are much larger than yeast Nbl1, which consists of little more than the helical region proposed to form the tight interaction with INCENP/Sli15 and Survivin/Bir1 complexes. Furthermore, a significant fraction of both Sli15 and Bir1 are present in a complex that lacks Ipl1 (29, 38) and that recent work has shown to contain Nbl1 (25), bringing into question the importance of Bir1 for chromosome biorientation. The extent to which Bir1 and Survivin function in conserved or analogous ways within the chromosomal passenger complexes of yeast and metazoans therefore was unclear at the start of our work.The Sli15-Bir1 complex has been proposed to interact both with microtubules (via the central domain of Sli15) and with kinetochores (through the Bir1-Ndc10 interaction) and through these interactions to function as a tension sensor, relaying information concerning the state of microtubule-kinetochore connections to Ipl1 kinase. Thus, when chromosomes are mono-oriented, the Bir1-Sli15-Nbl1 complex might activate Ipl1 in the absence of tension so as to promote chromosome biorientation by detaching incorrect microtubule attachments (29). This model predicts an essential role for Bir1 in promoting chromosome biorientation, but such evidence has been lacking. By generating a temperature-sensitive bir1 allele (bir1-17) and showing that it confers a profound defect in chromosome biorientation, we demonstrate that Bir1 does play a key role in the correction process needed to ensure that all yeast chromosomes become correctly aligned on the mitotic spindle. Furthermore, since the bir1-17 mutant fails to activate the spindle assembly checkpoint properly in response to reduced sister kinetochore tension, like Ipl1 it forms part of the tension checkpoint mechanism. Our data therefore are consistent with a role for Bir1 in conferring tension responsiveness on Ipl1 function.  相似文献   

12.
In cancer cells ablation of the GINS complex member Psf2 elicits chromosome mis-segregation yet the precise role of Psf2 in mitosis is unknown. We investigated the putative mitotic role of the GINS complex using synchronized cultures of untransformed Human Dermal Fibroblasts (HDF). Metaphase spreads from Psf1/Psf2-depleted HDF were normal and mitotic exit of Psf1/Psf2-depleted cells was only slightly delayed, suggesting no direct role for the GINS complex in mitosis of untransformed cells. Because the GINS complex is required for initiation and elongation events during DNA replication we hypothesized that the mitotic delay of Psf1/Psf2-deficient cells resulted indirectly from defective DNA synthesis during a prior S-phase. Therefore, we investigated the effects of Psf1/Psf2-depletion on DNA replication. Recruitment of Mcm7 to chromatin during G1 was unaffected by Psf1/Psf2-ablation, indicating that replication licensing does not require GINS. However, chromatin-binding of Cdc45 and PCNA, onset of DNA synthesis and accumulation of G2/M markers were delayed in Psf1/Psf2-ablated cells. The cell cycle delay of Psf1/Psf2-depleted HDF was associated with several hallmarks of pre-malignancy including γH2AX, Thr 68-phosphorylated Chk2, and increased numbers of aberrant fragmented nuclei. Ectopic expression of catalytically-inactive Chk2 promoted S-phase and G2/M progression in Psf1/Psf2-depleted cells, as evidenced by modestly-increased rates of DNA synthesis and increased dephosphorylation of Cdc2. Therefore, S-phase progression of untransformed cells containing sub-optimal levels of Psf1/2 is associated with replication stress and acquisition of DNA damage. The ensuing Chk2-mediated DNA damage signalling likely contributes to maintenance of chromosomal integrity.  相似文献   

13.
The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-microm plasmid. Cse4p-STB association is absolutely dependent on the plasmid partitioning proteins Rep1p and Rep2p and the integrity of the mitotic spindle. The kinetochore mutation ndc10-1 excludes Cse4p from centromeres without dislodging it from STB. Cse4p-STB association lasts from G1/S through late telophase during the cell cycle. The release of Cse4p from STB chromatin is likely mediated through spindle disassembly. A lack of functional Cse4p disrupts the remodeling of STB chromatin by the RSC2 complex, negates Rep2p binding and cohesin assembly at STB, and causes plasmid missegregation. Poaching of a specific histone variant by the plasmid to mark its partitioning locus with a centromere tag reveals yet another one of the molecular trickeries it performs for achieving chromosome- like fidelity in segregation.  相似文献   

14.
CP1 (encoded by the CEP1 gene) is a centromere binding protein of Saccharomyces cerevisiae that binds to the conserved DNA element I (CDEI) of yeast centromeres. To investigate the function of CP1 in yeast meiosis, we analyzed the meiotic segregation of CEN plasmids, nonessential chromosome fragments (CFs) and chromosomes in cep1 null mutants. Plasmids and CFs missegregated in 10-20% of meioses with the most frequent type of aberrant event being precocious sister segregation at the first meiotic division; paired and unpaired CFs behaved similarly. An unpaired chromosome I homolog (2N + 1) also missegregated at high frequency in the cep1 mutant (7.6%); however, missegregation of other chromosomes was not detected by tetrad analysis. Spore viability of cep1 tetrads was significantly reduced, and the pattern of spore death was nonrandom. The inviability could not be explained solely by chromosome missegregation and is probably a pleiotropic effect of cep1. Mitotic chromosome loss in cep1 strains was also analyzed. Both simple loss (1:0 segregation) and nondisjunction (2:0 segregation) were increased, but the majority of loss events resulted from nondisjunction. We interpret the results to suggest that CP1 generally promotes chromatid-kinetochore adhesion.  相似文献   

15.
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.  相似文献   

16.
Chromosomal passengers and the (aurora) ABCs of mitosis   总被引:28,自引:0,他引:28  
Chromosomal passengers are proteins that move from centromeres to the spindle midzone during mitosis. Recent experiments show that the passengers inner centromere protein (INCENP) and aurora-B kinase are in a macromolecular complex that might also contain a third passenger, survivin. The chromosomal passenger complex functions throughout mitosis in chromosome condensation and segregation, and at the end of mitosis, in the completion of cytokinesis.  相似文献   

17.
18.
We identified a putative Saccharomyces cerevisiae homolog of a phosphoinositide-specific phospholipase C (PI-PLC) gene, PLC1, which encodes a protein most similar to the delta class of PI-PLC enzymes. The PLC1 gene was isolated during a study of yeast strains that exhibit defects in chromosome segregation. plc1-1 cells showed a 10-fold increase in aberrant chromosome segregation compared with the wild type. Molecular analysis revealed that PLC1 encodes a predicted protein of 101 kDa with approximately 50 and 26% identity to the highly conserved X and Y domains of PI-PLC isozymes from humans, bovines, rats, and Drosophila melanogaster. The putative yeast protein also contains a consensus EF-hand domain that is predicted to bind calcium. Interestingly, the temperature-sensitive and chromosome missegregation phenotypes exhibited by plc1-1 cells were partially suppressed by exogenous calcium.  相似文献   

19.
Au WC  Crisp MJ  DeLuca SZ  Rando OJ  Basrai MA 《Genetics》2008,179(1):263-275
Cse4p is an essential histone H3 variant in Saccharomyces cerevisiae that defines centromere identity and is required for proper segregation of chromosomes. In this study, we investigated phenotypic consequences of Cse4p mislocalization and increased dosage of histone H3 and Cse4p, and established a direct link between histone stoichiometry, mislocalization of Cse4p, and chromosome segregation. Overexpression of the stable Cse4p mutant, cse4(K16R), resulted in its mislocalization, increased association with chromatin, and a high rate of chromosome loss, all of which were suppressed by constitutive expression of histone H3 (delta 16H3). We determined that delta 16H3 did not lead to increased chromosome loss; however, increasing the dosage of histone H3 (GALH3) resulted in significant chromosome loss due to reduced levels of centromere (CEN)-associated Cse4p and synthetic dosage lethality (SDL) in kinetochore mutants. These phenotypes were suppressed by GALCSE4. We conclude that the chromosome missegregation of GALcse4(K16R) and GALH3 strains is due to mislocalization and a functionally compromised kinetochore, respectively. Suppression of these phenotypes by histone delta 16H3 and GALCSE4 supports the conclusion that proper stoichiometry affects the localization of histone H3 and Cse4p and is thus essential for accurate chromosome segregation.  相似文献   

20.
Dynamic microtubules facilitate chromosome arrangement before anaphase, whereas during anaphase microtubule stability assists chromosome separation. Changes in microtubule dynamics at the metaphase-anaphase transition are regulated by Cdk1. Cdk1-mediated phosphorylation of Sli15/INCENP promotes preanaphase microtubule dynamics by preventing chromosomal passenger complex (CPC; Sli15/INCENP, Bir1/Survivin, Nbl1/Borealin, Ipl1/Aurora) association with spindles. However, whether Cdk1 has sole control over microtubule dynamics, and how CPC-microtubule association influences microtubule behavior, are unclear. Here, we show that Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP modulates microtubule dynamics by preventing CPC binding to the preanaphase spindle and to the central spindle until late anaphase, facilitating spatiotemporal control of microtubule dynamics required for proper metaphase centromere positioning and anaphase spindle elongation. Decreased Ipl1-dependent Sli15 phosphorylation drives direct CPC binding to microtubules, revealing how the CPC influences microtubule dynamics. We propose that Cdk1 and Ipl1/Aurora cooperatively modulate microtubule dynamics and that Ipl1/Aurora-dependent phosphorylation of Sli15 controls spindle function by excluding the CPC from spindle regions engaged in microtubule polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号