首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytotoxic and differentiating effects of 10-hydroxycamptothecin (HCPT) in the human promyelocytic leukemia cell line HL-60 were examined. By trypan blue dye exclusion, a 24-h exposure of the cells to 0.1 microM of the drug was found to be cytotoxic. Exposure of the cells to lower concentrations (0.001-0.01 microM) for 3 days reduced cell proliferation and induced cell differentiation. As determined by Wright-Giemsa staining, approximately 25% of promyelocytic cells became metamyelocytes, banded and segmented neutrophils. Electron microscopy demonstrated alterations in the ultrastructure of HCPT-induced HL-60 cells that included the formation of lobulated nuclei and the accumulation of large vesicles and small myelin bodies as well as glycogen-like particles in the cell periphery. Qualitatively similar results were obtained in a subline of HL-60 that is resistant to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA); however, the rate and extent of induced nitroblue tetrazolium-positive cells by HCPT and several other agents were greater in the resistant cell line. Under conditions that induced cell differentiation, HCPT sharply inhibited [3H]thymidine incorporation into DNA and increased the rate of protein synthesis without an effect on the rate of RNA synthesis. The measurement of DNA topoisomerase I activity in nuclear extracts from both HCPT- and DMSO-treated cells demonstrated that the enzyme was decreased in mature cells compared to nondifferentiated controls. The data suggest that progressive reduction of DNA topoisomerase I activity may be associated with cell differentiation, but whether HCPT-induced differentiation is mediated by inhibition of the enzyme is inconclusive.  相似文献   

2.
Mitochondria from human acute lymphoblastic leukemia cells contain an ATP-independent DNA topoisomerase which can relax negative and positive supercoils. This enzyme has been purified 200-fold by carboxymethyl-cellulose or double stranded DNA-cellulose chromatography. In contrast to the molecular weights reported for mitochondrial topoisomerases in other systems, the native leukemia enzyme has a molecular weight of 132,000 daltons as determined by gel permeation chromatography in buffer containing 0.4 M KCl. It also exhibits a sedimentation coefficient of 7.1 S when centrifuged through a 10–30% glycerol gradient in this high salt buffer. The enzyme is presumably a type I topoisomerase analogous to those found in rat liver and Xenopuslaevis mitochondria.  相似文献   

3.
4.
5.
Characterization of a camptothecin-resistant human DNA topoisomerase I   总被引:6,自引:0,他引:6  
Topoisomerase I purified from a camptothecin-resistant human leukemia cell line and from the parental, camptothecin-sensitive line were compared in vitro. Relaxation of supercoiled DNA by the wild type enzyme was inhibited in the presence of camptothecin, while the mutant enzyme was unimpaired. Camptothecin altered the cleavage pattern of the wild type but not of the mutant enzyme. The stability of cleavable complexes was studied at a preferred topoisomerase I-binding sequence recognized by both enzymes. Camptothecin greatly enhanced the kinetic stability of the cleavable complex formed by the wild type enzyme, whereas that of the mutant enzyme was only marginally affected. In the absence of camptothecin, the cleavable complex formed by the mutant enzyme was stabilized relative to that of the wild type by several criteria. Thus, the mutant enzyme cleaved the topoisomerase I recognition sequence with 2-fold higher efficiency than the wild type enzyme. The mutant cleavable complex had a higher kinetic stability and was less sensitive to salt dissociation than the wild type complex. Furthermore, the mutant enzyme formed cleavable complexes in the absence of divalent cations, which were required for complex formation by the wild type enzyme.  相似文献   

6.
The human topoisomerase I-mediated DNA relaxation reaction was studied following modification of the enzyme at the active site tyrosine (position 723). A series of unnatural tyrosine analogues was incorporated into the active site of human topoisomerase I by utilizing misacylated suppressor tRNAs in an in vitro protein synthesizing system. The relaxation activities of the modified human topoisomerase I analogues having varied steric, electronic, and stereochemical features were all greatly diminished relative to that of the wild type. It was found that modifications involving replacement of the nucleophilic tyrosine OH group with NH2, SH, or I groups eliminated DNA relaxation activity, as did changing the orientation of the nucleophilic tyrosine OH group. Only tyrosine analogues having the phenolic OH group in the normal position with respect to the protein backbone were active; the relative activities could be rationalized in chemical terms on the basis of the H-bonding and the electronic effects of the substituents attached to the meta position of the aromatic ring. In addition, the poisoning of one of the modified human topoisomerase I analogues, as part of covalent binary complexes with DNA, by CPT and 20-thio CPT was evaluated.  相似文献   

7.
In this study we report that human placenta is an excellent source of DNA topoisomerase I. The enzyme can be isolated in the fully intact 100 kDa form although lower molecular mass species are also observed. Occasionally, the enzyme can be resolved into two peaks of activity by chromatography on phosphocellulose. As expected, the enzyme promotes marked cleavage of DNA in response to the anticancer drug camptothecin. Because of this property and the ready availability of human placenta, the enzyme should prove to be useful in the development and testing of new anticancer drugs that target topoisomerase I.  相似文献   

8.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

9.
The therapeutic anticancer potential of flavonoids shown by recent research needs a greater understanding of these compounds. They are antioxidants and antimutagenic agents that can inhibit tumor promotion and transformation and can modify the activity of a large number of mammalian enzyme systems, such as human DNA-topoisomerases. Poisons of topoisomerases generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some of them have therapeutic efficacy in human cancer. The present investigation has assayed ten flavonoids, isolated in our laboratory, as topoisomerase I poisons obtaining myricetin and myricetin-3-galactoside as two new topoiosomerase I poisons. These two flavonoids, and the plant extract from which they were isolated, were assayed for cytotoxic activity against three human cancer cell lines using the SRB assay. Taking into account our previous research, structural requisites implicated in the topoisomerase poisoning are discussed.  相似文献   

10.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

11.
DNA topoisomerase (topo) I plays an important role in DNA metabolism by relieving the torsional restraints of DNA topology through ATP-independent single-strand DNA breakage. In the present study, we expressed human topo I in HeLa cells by fusing it to enhanced green fluorescent protein (EGFP). The EGFP-topo I fusion protein is functionally active in that it relaxes supercoiled plasmid DNA; forms complexes with DNA, as revealed by band depletion assays; and increases the sensitivity of cells to topo I inhibitors such as topotecan, as determined by growth inhibition assays. In contrast, a mutant form of the EGFP-topo I fusion protein, in which the active Tyr has been replaced by Phe (Y723F), has no such activities. Furthermore, the fusion protein localizes to the nucleus at interphase and completely associates with chromatids at every stage of mitosis. Of importance, the mutant fusion protein (Y723F) displays a pattern of subcellular localization identical to that of the wild-type fusion protein, although the mutant fusion protein is catalytically inactive. These results suggest that in addition to its role in DNA metabolism, topo I might also play a structural role in chromosomal organization; moreover, the association of topo I with chromosomal DNA is independent of its catalytic activity. Finally, the fusion constructs may provide a useful tool to study drug action in tumor cells, as demonstrated by nucleolar delocalization of the fusion proteins in response to treatment with the topo I inhibitor topotecan.  相似文献   

12.
Mapping of the active site tyrosine of eukaryotic DNA topoisomerase I   总被引:12,自引:0,他引:12  
DNA topoisomerase I from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe was overproduced using the cloned genes. Extracts from cells overproducing DNA topoisomerase I were prepared and incubated with 32P-labeled DNA. Alkali was used to trap the topoisomerase I-DNA covalent intermediate. Most of the DNA was digested with nuclease, and the resultant 32P-labeled topoisomerase I was subjected to cleavage with cyanogen bromide or formic acid. From the molecular weights of the resultant labeled peptides and by comparison of the amino acid sequences derived from the cloned genes, we were able to deduce that the active site tyrosine of eukaryotic DNA topoisomerase I is very near the carboxyl terminus, at amino acid 771 for S. pombe and 727 for S. cerevisiae. Site-directed mutagenesis was used to change tyrosine 727 of S. cerevisiae topoisomerase I to a phenylalanine. The resulting mutant topoisomerase I protein lost all DNA relaxation activity and rendered cells resistant to the topoisomerase I inhibitor, camptothecin. The amino acid sequence of human topoisomerase I has significant similarity to the two yeast topoisomerase I sequences. Based on this similarity, we infer that tyrosine 723 is the active site tyrosine of human enzyme.  相似文献   

13.
An anucleated cell system has been used for the first time to study mitochondrial topoisomerase activity. Mitochondrial extracts from human blood platelets contained type I topoisomerase. The type I classification was based on ATP-independent activity, inhibition by ATP or camptothecin, and the lack of inhibition by novobiocin. Platelet mitochondrial topoisomerase I relaxation activity was inhibited linearly by increasing concentrations of EGTA. Topoisomerase activity greater than 90% inhibited by 175 microM EGTA was partially restored to 16 and 50% of the initial level of activity by the subsequent addition of 50 and 100 microM Ca2+, respectively. Additionally, results from studies of partially purified platelet mitochondrial topoisomerase I were consistent with the crude extract data. This work supports the hypothesis that platelet mitochondria contain a type I topoisomerase that is biochemically distinct from that previously isolated and characterized from cell nuclei.  相似文献   

14.
A series of oligonucleotides with various lengths that contain nick and topoisomerase I-binding sites were designed. The interactions between these oligonucleotides and human topoisomerase I were investigated and the most efficient one among them has displayed IC50 value of 6.3 nM. Our studies have also demonstrated that the position of the nick as well as the length of the oligonucleotides were crucial factors for the inhibition of this nuclear enzyme.  相似文献   

15.
Acute promyelocytic leukemia (APL) is a hematological emergency in which a rapid diagnosis is essential for early administration of appropriate therapy, including all-trans retinoic acid before the onset of fatal coagulopathy. Currently, the following methodologies are widely used for rapid initial diagnosis of APL: 1) identification of hypergranular leukemic promyelocytes by using classical morphology; 2) identification of cells with diffuse promyelocytic leukemia (PML) protein distribution by immunofluorescence microscopy; 3) evidence of aberrant promyelocyte surface immunophenotype by conventional flow cytometry (FCM). Here, we show a method for immunofluorescent detection of PML localization using ImageStream FCM. This technique provides objective per-cell quantitative image analysis for statistically large sample sizes, enabling precise and operator-independent PML pattern recognition even in electronic and real dilution experiments up to 10% of APL cellular presence. Therefore, we evidence that this method could be helpful for rapid and objective initial diagnosis and the prompt initiation of APL treatment.  相似文献   

16.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

17.
Molecular structures of two human DNA topoisomerase I retrosequences   总被引:2,自引:0,他引:2  
  相似文献   

18.
A novel protamine kinase activity is present in human promyelocytic leukemia cells (HL60). The enzyme is clearly distinct from cyclic AMP-dependent protein kinase and is not calcium activated. The enzyme requires Mg2+, is sulfhydryl dependent and is strongly inhibited by fluoride. Activity is 80% cytosolic and 20% particulate but appears to be the same enzyme in the two fractions. Enzyme activity is markedly stimulated during differentiation by retinoic acid and dimethylformanide but not by a phorbol diester. However the latter treatment does lead to a redistribution of the kinase so that it becomes predominantly particulate.  相似文献   

19.
Structure of the human type I DNA topoisomerase gene   总被引:7,自引:0,他引:7  
We describe the molecular organization of the human gene coding for type I DNA topoisomerase. The coding sequence is split into 21 exons distributed over at least 85 kilobase pairs (kb) of human genomic DNA. The sizes of the 20 introns vary widely between 0.2 and at least 30 kb and all contain the sequence elements known to be required for pre-mRNA splicing. Several of the intron sequences separate exons encoding parts of the enzyme that are highly conserved between human and yeast suggesting that at least some of the exons may code for individual, structurally, or functionally important domains of the enzyme. We also describe the promoter sequence of the human topoisomerase I gene and show that it is composed of distinct functional elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号