首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human chromosome 2 contains large blocks of segmental duplications (SDs), both within and between proximal 2p and proximal 2q, and these may contribute to the frequency of the common variant inversion inv(2)(p11.2q13). Despite their being cytogenetically homogeneous, we have identified four different breakpoint combinations by fluorescence in situ hybridization mapping of 40 cases of inv(2)(p11.2q13) of European origin. For the vast majority of inversions (35/40), the breakpoints fell within the same spanning BACs, which hybridized to both 2p11.2 and 2q13 on the normal and inverted homologues. Sequence analysis revealed that these BACs contain a significant proportion of intrachromosomal SDs with sequence homology to the reciprocal breakpoint region. In contrast, BACs spanning the rare breakpoint combinations contain fewer SDs and with sequence homology only to the same chromosome arm. Using haplotype analysis, we identified a number of related family subgroups with identical or very closely related haplotypes. However, the majority of cases were not related, demonstrating for the first time that the inv(2)(p11.2q13) is a truly recurrent rearrangement. Therefore, there are three explanations to account for the frequent observation of the inv(2)(p11.2q13): the majority have arisen independently in different ancestors, while a minority either have been transmitted from a common founder or have different breakpoints at the molecular cytogenetic level.  相似文献   

2.
The pericentric inv(10)(p11.2q21.2) mutation has been frequently identified in cytogenetic laboratories, is phenotypically silent, and is considered to be a polymorphic variant. Cloning and sequencing of the junction fragments on 10p11 and 10q21 revealed that neither inversion breakpoint directly involved any genes or repetitive sequences, although both breakpoint regions contain a number of repeats. All 20 apparently unrelated inv(10) families in our study had identical breakpoints, and detailed haplotype analysis showed that the inversions were identical by descent. Thus, although considered a common variant, inv(10)(p11.2q21.2) has a single ancestral founder among northern Europeans.  相似文献   

3.
The majority of constitutional reciprocal translocations appear to be unique rearrangements arising from independent events. However, a small number of translocations are recurrent, most significantly the t(11;22)(q23;q11). Among large series of translocations there may be multiple independently ascertained cases with the same cytogenetic breakpoints. Some of these could represent additional recurrent rearrangements, alternatively they could be identical by descent (IBD) or have subtly different breakpoints when examined under higher resolution. We have used molecular breakpoint mapping and haplotyping to determine the origin of three pairs of reciprocal constitutional translocations, each with the same cytogenetic breakpoints. FISH mapping showed one pair to have different breakpoints and thus to be distinct rearrangements. Another pair of translocations were IBD with identical breakpoint intervals and highly conserved haplotypes on the derived chromosomes. The third pair, t(4;11)(p16.2;p15.4), had the same breakpoint intervals by aCGH and fosmid mapping but had very different haplotypes, therefore they represent a novel recurrent translocation. Unlike the t(11;22)(q23;q11), the formation of the t(4;11)(p16.2;p15.4) may have involved segmental duplications and sequence homology at the breakpoints. Additional examples of recurrent translocations could be identified if the resources were available to study more translocations using the approaches described here. However, like the t(4;11)(p16.2;p15.4), such translocations are likely to be rare with the t(11;22) remaining the only common recurrent constitutional reciprocal translocation.  相似文献   

4.
To test the hypothesis that the phenotypic abnormalities seen in cases with apparently balanced chromosomal rearrangements are the result of the presence of cryptic deletions or duplications of chromosomal material near the breakpoints, we analyzed three cases with apparently balanced chromosomal rearrangements and phenotypic abnormalities. We characterized the breakpoints in these cases by using microsatellite analysis by polymerase chain reaction and fluorescence in situ hybridization analysis of yeast artificial chromosome clones selected from the breakpoint regions. Molecular characterization of the translocation breakpoint in patient 1 [46,XY,t(2;6)(p22.2;q23.1)] showed the presence of a 4- to 6-Mb cryptic deletion between markers D6S412 and D6S1705 near the 6q23.1 breakpoint. Molecular characterization of the proximal inversion 7q22.1 breakpoint in patient 2 [46,XY,inv(7)(q22.1q32.1)] revealed the presence of a 4-Mb cryptic deletion between D7S651 and D7S515 markers. No deletion or duplication of chromosomal material was found near the breakpoints in patient 3 [46,XX,t(2;6)(q33.1;p12.2)]. Our study suggests that a systematic molecular study of breakpoints should be carried out in cases with apparently balanced chromosomal rearrangements and phenotypic abnormalities, because cryptic deletions near the breakpoints may explain the phenotypic abnormalities in these cases. Received: 9 March 1998 / Accepted: 24 April 1998  相似文献   

5.
Peri- and paracentric inversions are observed in human leukocytes at various rates. Four categories are proposed, in relation to the frequency of occurrence, although it may vary with time for a same inversion. Category 1 corresponds to isolated, thus non recurrent inversions. Category 2 (f congruent to .001) corresponds to inv(14)(q12qter) and inv(7)(p14q35) in individuals with presumably normal genetic constitution. Category 3 (f congruent to .01) corresponds to inv(7)(p14q35) in patients affected by ataxia telangiectasia (AT). This inversion, when it is frequent, indicates an abnormal genetic constitution, radiation sensitive and predisposing to cancers. Finally, category 4 (f greater than or equal to .1) corresponds to inversions existing in precancer or in cancer clonal cells: inv(14)(q11.2q32.2) in AT patients affected by a T-cell hemopathy, inv(14)(q12qter) in chronic T-cell lymphocytic leukaemia, and inv(16)(p13q22) in acute myelomonocytic leukaemia with abnormal eosinophils. The prognostic and diagnostic interests of these inversions is discussed.  相似文献   

6.
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks. Basing on molecular cytogenetic data we hypothesize the differences of clinical manifestations to be produced by a position effect due to localization of breakpoints within variable centromeric heterochromatin and, alternatively, due to differences in the location breakpoints, disrupteding different genes within region 7q21-q22. Our results reconfirm previous linkage analyses suggested 7q21-q22 as a locus of ectrodactily and propose inv (7)(p11q21.1) as a cause of recognizable pattern of malformations or a new chromosomal syndrome.  相似文献   

7.
The evolutionary history of human chromosome 7   总被引:6,自引:0,他引:6  
We report on a comparative molecular cytogenetic and in silico study on evolutionary changes in human chromosome 7 homologs in all major primate lineages. The ancestral mammalian homologs comprise two chromosomes (7a and 7b/16p) and are conserved in carnivores. The subchromosomal organization of the ancestral primate segment 7a shared by a lemur and higher Old World monkeys is the result of a paracentric inversion. The ancestral higher primate chromosome form was then derived by a fission of 7b/16p, followed by a centric fusion of 7a/7b as observed in the orangutan. In hominoids two further inversions with four distinct breakpoints were described in detail: the pericentric inversion in the human/African ape ancestor and the paracentric inversion in the common ancestor of human and chimpanzee. FISH analysis employing BAC probes confined the 7p22.1 breakpoint of the pericentric inversion to 6.8 Mb on the human reference sequence map and the 7q22.1 breakpoint to 97.1 Mb. For the paracentric inversion the breakpoints were found in 7q11.23 between 76.1 and 76.3 Mb and in 7q22.1 at 101.9 Mb. All four breakpoints were flanked by large segmental duplications. Hybridization patterns of breakpoint-flanking BACs and the distribution of duplicons suggest their presence before the origin of both inversions. We propose a scenario by which segmental duplications may have been the cause rather than the result of these chromosome rearrangements.  相似文献   

8.
Paracentric inversion 11   总被引:1,自引:0,他引:1  
A new familial case of paracentric inversion of chromosome 11 inv(11)(q21q23.3) ascertained by multiple abortions in a female carrier is presented. A review of the literature shows 19 further cases of paracentric inversion 11. According to the different breakpoints, the inversions of the long arm of chromosome 11 may be classified into three types.  相似文献   

9.
Rec8 syndrome (also known as "recombinant 8 syndrome" and "San Luis Valley syndrome") is a chromosomal disorder found in individuals of Hispanic descent with ancestry from the San Luis Valley of southern Colorado and northern New Mexico. Affected individuals typically have mental retardation, congenital heart defects, seizures, a characteristic facial appearance, and other manifestations. The recombinant chromosome is rec(8)dup(8q)inv(8)(p23.1q22.1), and is derived from a parental pericentric inversion, inv(8)(p23.1q22.1). Here we report on the cloning, sequencing, and characterization of the 8p23.1 and 8q22 breakpoints from the inversion 8 chromosome associated with Rec8 syndrome. Analysis of the breakpoint regions indicates that they are highly repetitive. Of 6 kb surrounding the 8p23.1 breakpoint, 75% consists of repetitive gene family members-including Alu, LINE, and LTR elements-and the inversion took place in a small single-copy region flanked by repetitive elements. Analysis of 3.7 kb surrounding the 8q22 breakpoint region reveals that it is 99% repetitive and contains multiple LTR elements, and that the 8q inversion site is within one of the LTR elements.  相似文献   

10.
Pericentric inversions of the human Y chromosome (inv(Y)) are the result of breakpoints in Yp and Yq. Whether these breakpoints occur recurrently on specific hotspots or appear at different locations along the repeat structure of the human Y chromosome is an open question. Employing FISH for a better definition and refinement of the inversion breakpoints in 9 cases of inv(Y) chromosomes, with seemingly unvarying metacentric appearance after banding analysis, unequivocally resulted in heterogeneity of the pericentric inversions of the human Y chromosome. While in all 9 inv(Y) cases the inversion breakpoints in the short arm fall in a gene-poor region of X-transposed sequences proximal to PAR1 and SRY in Yp11.2, there are clearly 3 different inversion breakpoints in the long arm. Inv(Y)-types I and II are familial cases showing inversion breakpoints that map in Yq11.23 or in Yq11.223, outside the ampliconic fertility gene cluster of DAZ and CDY in AZFc. Inv(Y)-type III shows an inversion breakpoint in Yq11.223 that splits the DAZ and CDY fertility gene-cluster in AZFc. This inversion type is representative of both familial cases and cases with spermatogenetic impairment. In a further familial case of inv(Y), with almost acrocentric morphology, the breakpoints are within the TSPY and RBMY repeat in Yp and within the heterochromatin in Yq. Therefore, the presence of specific inversion breakpoints leading to impaired fertility in certain inv(Y) cases remains an open question.  相似文献   

11.
Paracentric inversions in man   总被引:3,自引:3,他引:0  
Summary The Leuven cytogenetic center experience on paracentric inversions in man is discussed. From a total of 51,000 patients, referred for constitutional chromosome analysis during the period 1970–1985, paracentric inversions were found in 18 index patients. A puzzling finding is the high incidence (26%) of mental retardation and/or congenital malformation in the inversion carrier offspring of phenotypically normal parents with identical chromosomal rearrangements. There was also a high incidence of early fetal loss in the inversion carrier parents. This finding may be explained by an increase of chromosomally unbalanced gametes which result from crossing-over in the meiotic inversion loop. Finally, the possibility of an increased tendency to non-disjunction in paracentric inversion carrier parents is discussed. The most frequent paracentric inversion was inv(3)(p13p25); it was detected in seven unrelated index patients. According to the present experience and the literature data, the breakpoints in paracentric inversions seem to occur preferentially at 1p22, 1p36, 3p13, 3p25, 7q11, and 7q22 regions.  相似文献   

12.
Pericentric inversions of chromosome number 9 have been studied in 4 different probands: a normal female with designation 46,XX,inv(9)(p12q13); a male with Down syndrome designated as 47,XY,+21,inv(9))p13q13); a premature infant with multiple, congenital malformations who was 46,XX,inv(9)(p12q21), and a Down syndrome proband with 47,XYqs,+21,inv(9)(p13q21). All 4 cases were shown to be inherited based on family studies. These families are discussed with reference to the literature as to what possible effect this structural change could have on the reproductive capability of a normal carrier and what guidelines are available for counseling such a carrier.  相似文献   

13.
周波  唐艳平  刘永章 《遗传》2006,28(2):148-152
应用双色荧光原位杂交的方法,国内首次报道一例特殊inv(Y)异常的性质,探讨Y染色体倒位结构异常的形成机理以及与习惯性流产临床表型的关系。应用 Biotin-11-dUTP标记的Y染色体短臂断裂点Yp11.3探针(编号889)和CY3标记的Y染色体长臂断裂点Yq12远端异染色质区探针(编号PY3.4),对1例G显带核型分析为[46, XY(90%) / 46, X, inv(Y)(p11.3;q12)]的平衡易位携带者进行双色荧光原位杂交研究。双色FISH结果显示,该易位携带者异常核型比例为22%,稍高于G显带分析中确定的比例。而且,除G显带检测出的倒位类型外,又有两种类型的倒位,其中涉及到常规显带技术难以检测出的染色单体型倒位。3种倒位类型的存在说明该患者inv(Y)断裂点呈不均一性。FISH技术是一种能准确可靠检测出染色体倒位形成的重要手段。   相似文献   

14.
Summary Two cases of pericentric inversion of chromosome 12 are presented, one 46,XX,inv(12)(p13;q11) and the other 47,XX,+21,inv(12)(p13;q13). In both cases one of the parents was also a heterozygotic carrier of the inversion. These inversions were detected among 4035 cytogenetic analyses carried out in patients with psychosomatic retardation and/or malformations (357 with a Down phenotype) and in patients with histories of miscarriages, sterility, or growth failure.In cases studied from a review of the literature together with our own we found that among 3235 cases of Down syndrome there were 7 patients with trisomy 21 and inherited balanced reciprocal translocation involving chromosomes other than pair 21. The frequent participation of some chromosomes in these balanced reciprocal translocations, above all those of group A (1–3), suggests that these and probably other rearrangements could make the segregation of chromosome 21 easier.  相似文献   

15.
Chromosomal inversions are the most common type of genome rearrangement in the genus Drosophila. Although the potential of transposable elements (TEs) for generating inversions has been repeatedly demonstrated in the laboratory, little is known on their role in the generation of natural inversions, which are those effectively contributing to the adaptation and/or evolution of species. We have cloned and sequenced the two breakpoints of the polymorphic inversion 2q7 of D. buzzatii. The sequence analysis of the breakpoint regions revealed the presence in the inverted chromosomes of large insertions, formed by complex assemblies of transposons, that are absent from the chromosomes without the inversion. Among the transposons inserted, the Foldback-like element Galileo, that was previously found responsible of the generation of the widespread inversion 2j of D. buzzatii, is present at both 2q7 breakpoints and is the most likely inducer of the inversion. A detailed study of the nucleotide and structural variation in the breakpoint regions of six chromosomal lines with the 2q7 inversion detected no nucleotide differences between them, which suggests a monophyletic and recent origin. In contrast, a remarkable degree of structural variation was observed in the same six chromosomal lines. It thus appears that the two breakpoints of the inverted chromosomes have become genetically unstable hotspots, as was previously found for the 2j inversion breakpoints. The possibility that this instability is caused by structural properties of Foldback elements is discussed.  相似文献   

16.
To investigate patterns of genetic recombination within a heterozygous paracentric inversion of chromosome 9 (46XY inv[9] [q32q34.3]), we performed sperm typing using a series of polymorphic microsatellite markers spanning the inversion region. For comparison, two donors with cytogenetically normal chromosomes 9, one of whom was heterozygous for a pericentric chromosome 2 inversion (46XY inv[2] [p11q13]), were also tested. Linkage analysis was performed by use of the multilocus linkage-analysis program SPERM, and also CRI-MAP, which was adapted for sperm-typing data. Analysis of the controls generated a marker order in agreement with previously published data and revealed no significant interchromosomal effects of the inv(2) on recombination on chromosome 9. FISH employing cosmids containing appropriate chromosome 9 markers was used to localize the inversion breakpoint of inv(9). Analysis of inv(9) sperm was performed by use of a set of microsatellite markers that mapped centromeric to, telomeric to, and within the inversion breakpoints. Three distinct patterns of recombination across the region were observed. Proximal to the centromeric breakpoint, recombination was similar to normal levels. Distal to the telomeric breakpoint, there was an increase in recombination found in the inversion patient. Finally, within the inversion, recombination was dramatically reduced, but several apparent double recombinants were found. A putative model explaining these data is proposed.  相似文献   

17.
High-resolution G-banding analysis has demonstrated remarkable morphological conservation of the chromosomes of the Hominidae family members (humans, chimpanzees, gorillas, and orangutans), with the most notable differences between the genomes appearing as changes in heterochromatin distribution and pericentric inversions. Pericentric inversions may have been important for the establishment of reproductive isolation and speciation of the hominoids as they diverged from a common ancestor. Here the previously published primate karyotype comparisons, coupled with the resources of the Human Genome Project, have been used to identify pericentric inversion breakpoints seen when comparing the human karyotype to that of chimpanzee. Yeast artificial chromosome (YAC) clones were used to detect, by fluorescencein situhybridization, five evolutionary pericentric inversion breakpoints present on the chimpanzee chromosome equivalents of human chromosomes 4, 9, and 12. In addition, two YACs from human 12p that detect a breakpoint in chimpanzee detect a similar rearrangement in gorilla.  相似文献   

18.
Schmidt S  Claussen U  Liehr T  Weise A 《Human genetics》2005,117(2-3):213-219
We compared the chromosomal breakpoints of evolutionary conserved and constitutional inversions. Multicolor banding and human-specific bacterial artificial chromosomes were applied to map the breakpoints of constitutional pericentric inversions on human chromosomes 2 and 9. For the first time, we present a high-resolution analysis of the breakpoint regions, which are characterized by gene destitution, co-localization with fragile sites, multitude repeats as well as pseudogenes and, remarkably, a large sequence homology to the opposite breakpoint. In contrast, evolutionary inversion breakpoints lack such extensive cross-hybridizing regions and are often associated with fragile sites of the genome and low-copy repeats. These molecular characteristics gave evidence for different types of inversion formation and indicate that evolutionary inversions cannot originate from constitutional inversions like those of chromosomes 2 and 9. Finally, the constitutional inversion breakpoints were investigated on three different great ape species and on four test persons each bearing the same cytogenetically determined inversion on chromosomes 2 and 9, respectively. Our data indicate the existence of different molecular breakpoints for the two variant chromosomes.  相似文献   

19.
Summary The Leuven cytogenetic centre experience on pericentric inversion in man is discussed with exclusion of the pericentric inversions of the heterochromatic blocks of chromosomes 1 and 9. In a total of 51,500 patients, referred for constitutional chromosome analysis during the period 1970–1985, pericentric inversions were found in 24 index patients. The breakpoints detected in these different pericentric inversions are summarized and compared to those found in previous reports. Bands 2p13, 2q21, 5q31, 6c21, 10q22, and 12q13 were shown to be repeatedly involved in the different studies and, furthermore, breakpoints at bands 2q11, 5p13, 5p15, 5q13, 7q11, 11q25, and 14p11 were present in this study as well as in our previous review on reciprocal autosomal translocations. In 13 familial pericentric inversions, even after exclusion of all inversion carrier probands, a 1.6:1 excess of pericentric inversion carriers versus karyotypically normal progeny was observed. While chromosomally unbalanced offspring represent 3.5% of all chromosomally investigated liveborns of the present study, 7.1% of all liveborn inversion carrier offspring presented with a mental retardation and/or multiple congenital anomalies (MR/MCA) problem. Additional chromosomal abnormalities, i.e. a 21 trisomy and an accessory small ring chromosome were observed in two pericentric inversion carriers. These data and results are discussed and compared to the data available in the literature.  相似文献   

20.
A fetus with recombinant of chromosome 8 inherited from her carrier father   总被引:3,自引:0,他引:3  
Summary A pericentric inversion of chromosome 8, inv(8)(p23q22), in a male carrier resulted in an unbalanced recombinant, rec(8)dup q, inv(8)(p23q22), which was diagnosed prenatally. The features seen in the aborted fetus resembled the features seen in a previously affected child who received the identical recombinant from her carrier mother. In this particular inversion involving chromosome 8, both male and female carriers risk producing an unbalanced progeny. Different familial pericentric inversions are reviewed for the presence or absence of unbalanced recombinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号