首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

2.
Abstract.  An increase in egg size with embryonic development in stoneflies is believed to result from the uptake of water by osmosis. The present study aims to investigate whether a selective ion transport through egg membranes exists before hatching, and whether ions are released after hatching. Viable and nonviable egg masses are incubated in Petri dishes filled with water, and the concentrations of the ions F, Cl, SO42−, NO3, Na+, K, Mg2+ and Ca2+ in the water are determined. The ion transport of an egg mass before and after hatching and a nonviable egg mass is then calculated. Before hatching, Cl, SO42−, NO3, Na+, Mg2+ and Ca2+ are taken up from the surrounding water into the inner egg. These ions are selectively taken into the egg. After hatching, Cl, SO42−, Na+, Mg2+ and Ca2+ are released into the surrounding water. The amount of these ions released after hatching is lower than the amount taken up before hatching. Ions that are not released after hatching are considered to be used in embryonic development.  相似文献   

3.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

4.
Abstract: The putative role of glutamine, exported from leaves to roots, as a negative feedback signal for nitrate uptake was investigated in Zea mays L. seedlings. Glutamine (Gln) was supplied by immersion of the tip-cut leaves in a concentrated solution. Nitrate (NO3) uptake was measured by its depletion in amino acid-free medium. The treatment with Gln resulted in a strong inhibition of nitrate uptake rate, accompanied by a significant enrichment of amino compounds in root tissue. The effect of N-availability on NO3 uptake was determined in split-root cultures. The plants were subjected to complete or localized N supply. Inducible NO3 uptake systems were also induced in N-deprived roots when the opposite side of the root system was supplied with KNO3. The inhibitory effect of Gln was unaffected by localized N supply on one side of the split-root. The potential role of Gln in the shoot-to-root control of NO3 uptake is discussed.  相似文献   

5.
SUMMARY. 1. Time-course measurements of NH4+ and NO3uptake were made on the natural phytoplankton populations in a eutrophic lake at a time when these nutrients were at their lowest annual concentration.
2. Both NH4+ and NO3 uptake was increased at least five-fold during the first 5 min of incubation following near saturating pulses of these nutrients.
3. Elevated uptake was also observed following low level (∼2μg N 1−1) pulses of NH4+ and NO3, but substrate depletion during the first hour of incubation may have been partially responsible for this apparent enhancement.
4. Incorporation of I5N into TCA-insoluble material (protein) following the saturating NH4+ pulse was increased less than total cellular 15N uptake, whereas no elevation of 15N incorporation into protein was observed following a saturating NO3pulse.
5. The percentage of I5N incorporated into protein, with respect to total cellular uptake, was ∼32% and ∼12% for NH4+ and NO3, respectively, following 5 h of incubation.  相似文献   

6.
Abstract: We examined the modulation of nitric oxide production in vivo by measuring levels of nitrite (NO2) and nitrate (NO3) in the dialysate of the cerebellum in conscious rats, by using an in vivo brain microdialysis technique. The levels of both NO2 and NO3 were decreased by the intraperitoneal injection of N G-nitro- l -arginine methyl ester, an inhibitor of nitric oxide synthase, whereas N G-nitro- d -arginine methyl ester had no effect. l -Arginine by itself increased NO2 and NO3 levels and diminished the reduction of their levels caused by N G-nitro- l -arginine methyl ester. Direct infusion of l -glutamate, N -methyl- d -aspartate, or KCl into the cerebellum through a dialysis probe resulted in an increase in NO2 and/or NO3 levels. The effects of N -methyl- d -aspartate and KCl were dependent on extracellular calcium. Furthermore, the stimulatory effects of l -glutamate and N -methyl- d -aspartate were inhibited by N G-nitro- l -arginine methyl ester and (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), an N -methyl- d -aspartate receptor antagonist. These results suggest that NO2 and NO3 levels may be related to nitric oxide production in vivo.  相似文献   

7.
Abstract A methanotrophic nitrifying consortium was previously obtained from a humisol which showed CH4-dependent nitrification. Although the methanotroph could not be obtained in pure culture, three other members of the consortium have been isolated: An obligately methylotrophic Methylobacillus (Is-1) which grows only on CH3OH and does not nitrify; a Pseudomonas (Is-2) which grows on Is-1 culture filtrate and produces NO2, NO3 and N2O from NH2OH, and NO3 from NO2; and a second Pseudomonas (Is-3) which produces NO3 from NH4+ or NO2, and N2O from NH2OH. A model is proposed for the trophic relations and nitrogen transformations in the consortium which may apply to some natural systems.  相似文献   

8.
Activation potentials of the eggs of two anuran species, Bufo vulgaris formosus and Rana rugosa , were measured in media of different ionic composition, and the mechanism of their generation is discussed. The same trends of ionic effects upon the activation potential were consistently obtained in both species.
The membrane potential of the unactivated eggs was negative with respect to tap water, Ringer's solution, and the media described below except isotonic KCl and KNO3, in which the potentials were nearly zero or sometimes slightly positive. Upon activation induced by pricking in tap water, isotonic Na2SO4, or 42 mM or 63 mM buffered sodium phosphate solution, depolarization followed by reversal of the membrane potential took place, associated with a decrease in the effective resistance. Then the potential gradually decreased and returned to the initial value.
On the other hand, in Ringer's solution, or in isotonic NaBr, NaNO3, KCl or KNO3, the activation potential occurred in a hyperpolarizing direction, associated with a decrease in the effective resistance.
These results suggest that the ooplasmic membrane of the anuran egg surface during activation is selectively permeable to NO3 and Br as well as Cl, but not to SO4 and phosphate ions, or alternatively, that the activation potential is due to this selective permeability and to the concentration gradients of these monovalent anions across the ooplasmic membrane.  相似文献   

9.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

10.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

11.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

12.
Abstract A consortium was enriched from a humisol incubated with 3.6 kPa CH4 and NH4+. This consortium oxidized NH4+ to NO2 and NO3 (NO3/NO2 ratio about 20) with smaller amounts of N2O. This oxidation stopped in the stationary phase after depletion of CH4. CH3OH or CO2 did not support oxidation. Growth and resting cell experiments suggested that nitrification was associated with methanotrophic activity and that chemoautotrophic nitrifiers were absent.  相似文献   

13.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

14.
Impact of gaseous nitrogen deposition on plant functioning   总被引:5,自引:0,他引:5  
Dry deposition of NH3 and NOx (NO and NO2) can affect plant metabolism at the cellular and whole-plant level. Gaseous pollutants enter the plant mainly through the stomata, and once in the apoplast NH3 dissolves to form NH4+, whereas NO2 dissolves to form NO3 and NO2. The latter compound can also be formed after exposure to NO. There is evidence that NH3-N and NOx-N can be reversibly stored in the apoplast. Temporary storage might affect processes such as absorption rate, assimilation and re-emission. Once formed, NO3 and NO2 can be reduced, and NH4+ can be assimilated via the normal enzymatic pathways, nitrate reductase (NR), nitrite reductase and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Fumigation with low concentrations of atmospheric NH3 increases in vitro glutamine synthetase activity, but whether this involves both or only one of the GS isoforms is still an open question. There seems to be no correlation between fumigation with low concentrations of NH3 and in vitro GDH activity. The contribution of atmospheric NH3 and NO2 deposition to the N budget of the whole plant has been calculated for various atmospheric pollutant concentrations and relative growth rates ( RGRs ). It is concluded that at current ambient atmospheric N concentrations the direct impact of gaseous N uptake by foliage on plant growth is generally small.  相似文献   

15.
An improved method of cell fractionation allowed the extraction of soluble (sNR) and membrane-associated (mNR) forms of nitrate reductase (NR) from a dinoflagellate, even though in previous studies only mNR had been found in these algae. Both activities were assayed in cell-free extracts of Peridinium gatunense from Lake Kinneret, Israel, after disruption of the cells and differential centrifugation. In the cultures used, sNR showed much higher NO3-reducing activity. Only a low proportion, 2.5–3% of NR activity, was found to be associated with mNR. Moreover, mNR comprised two forms as indicated by protein solubilization: a tightly membrane-bound and a more weakly attached NR. Ascorbate inhibited all NR activities, but that of mNR recovered after its removal. Polyvinyl pyrrolidone (PVP) and DTT also diminished sNR and mNR activities. For both enzymes, pH optima (7.65) and temperature optima (13–25°C) were similar, and agreed with those for optimum growth of P. gatunense both in culture and in the lake. The most efficient electron donor was NADH, though NADPH sustained low NR activities. Carboxylic anions such as succinate and malate did not support any reduction of NO3, nor did they cause any stimulation of sNR or mNR activities. Both forms of NR showed a high affinity for their substrates: K m was c. 10 μM for NO3 and c. 5 μM for NADH. The high efficiency of NO3 assimilation by Peridinium seems to be limited mainly by energy under otherwise optimal nutritional conditions and, at low nitrate concentrations, the low K m may be one of the main reasons for the high competitivity of this alga in Lake Kinneret.  相似文献   

16.
Denitrification in sediment determined from nitrogen isotope pairing   总被引:29,自引:0,他引:29  
Abstract A new method for accurate and easy measurement of denitrification in sediments is presented. The water overlying intact sediment cores was enriched with 15NO3 which mixed with the 14NO3 of the natural sources of NO3. The formation by denitrification of single-labeled (14N15N) and double-labeled (15N15N) dinitrogen pairs was measured by mass spectrometry after a few hours incubation. Total denitrification including the formation of unlabeled (14N14N) dinitrogen could be calculated assuming random isotope pairing by denitrification of the uniformly mixed NO3 species. In contrast to previous approaches, by this method it is possible to measure denitrification of both NO3 diffusing from the overlying water and NO3 from nitrification within the sediment.  相似文献   

17.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

18.
Nitrogen regulation of nitrate uptake and nitrate reductase (EC 1.7.99.4) was studied in the cyanobacterium Anabaena cycadeae Reinke and its glutamine auxotroph. Development of the nitrate uptake system preceded, and was independent of, the development of the nitrate reductase system. The levels of both systems were several-fold higher in the glutamine auxotroph lacking glutamine synthetase (EC 6.3.1.2) than in the wild type strain having normal glutamine synthetase activity. The nitrate uptake system was found to be NH4-repressible and the nitrate reductase system NO3-inducible. NH4+ was the initial repressor signal for the uptake process which was involved in the control of the NO3inducible reductase system.  相似文献   

19.
The intracellular hatching enzyme was confirmed to be particulate-bound in the sea urchin, Hemicentrotus pulcherrimus. The enzyme was solubilized most effectively by sonication in buffer containing 12.5 mM CaCl2, and 0.5 M KCl. The intracellular hatching enzyme is suggested to be activated by an antipain- or elastatinal-susceptible protease(s) on its solubilization. Since the intracellular hatching enzyme solubilized in the absence of protease inhibitors was inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin, the active hatching enzyme is concluded to be a chymostatin-sensitive serine protease. The enzyme required CaCl2, and KCl or NaCl for both stability and activity. The preference of the enzyme of anions as sodium salts was as follows: Cl > NO3 > I > SCN. The apparent molecular weights of the intracellular hatching enzyme (IHE) and the hatching enzyme secreted from the blastula with or without the fertilization envelope (SHE or dSHE) were estimated as 89,000, 135,000, 80,000, respectively. On incubations with isolated fertilization envelopes as an enzyme substrate, the apparent molecular weights of dSHE and IHE increased to 128,000 and 105,000, respectively.  相似文献   

20.
The in situ photoactivation of an HCO3- uptake system in the green alga Monoraphidium braunii requires the irradiation of the cell suspensions with short wavelength radiation (blue, UVA and/or UVC). Plasma membrane ATPase inhibitors block the uptake of this monovalent anion at pH 9. M. braunii cells grown in high CO2 lack an HCO3- uptake system in their plasma membrane, but those grown in low CO2 can take up this anion at high rates. Cells grown in high CO2, transferred to CO2-limiting conditions in the light, start taking up HCO3- in 30 min, although they take 90 min to reach maximum rates of HCO3- transport. Therefore, this induction process seems to be triggered by low external CO2 concentration. In fact, increasing or decreasing the external HCO3- concentration does not induce the uptake system and only a decrease in CO2 concentration in the medium triggers the induction process. The appearance of the HCO3- transport activity is sensitive to cycloheximide, indicating that cytoplasmic protein biosynthesis is necessary for the induction of the uptake system. Photosynthetically active radiation, but not particularly blue light, is essential for induction of the uptake system to occur and the inhibition of photosynthesis by DCMU blocks it. From these results it can be inferred that when M. braunii cells detect a drop in CO2 concentration, they induce a blue light-dependent HCO3- uptake system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号