首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Na+-dependent transport of alanine has been examined in Chinese hamster ovary (CHO) cells as a function of the fatty acid composition of their membrane lipids. Significant changes in the fatty acid composition of the CHO cell phospholipids were achieved by supplementation of the growth medium with specific saturated (palmitate) or monoenoic (oleate) free fatty acids. Arrhenius plots of the temperature-dependent uptake of alanine were constructed for cells of altered fatty acid composition. Alanine uptake was characterized by a single discontinuity in the Arrhenius plot. The temperature of this break was observed to be dependent upon the fatty acid composition of the cell phospholipids, ranging from 16 degrees C for cells enriched with oleate to 32 degrees C for cells enriched in palmitate. Calculation of the Km value for the uptake process showed no significant change with temperature or fatty acid supplementation. Correlations are made between the physical state of the membrane lipids and the temperature-dependence for alanine transport. The results are discussed in terms of membrane fatty acid composition, ordered in equilibrium fluid phase transitions and amino acid transport.  相似文献   

2.
The release of enzymes by osmotic shock from Escherichia coli strain 30E, an unsaturated fatty acid auxotroph, was examined in culture supplemented with either cis- or trans-unsaturated fatty acids. Cultures grown in oleate-supplemented medium release a large fraction of the total cyclic phosphodiesterase, acid hexose phosphatase, and 5'-nucleotidase following osmotic shock. Cultures grown in elaidate-supplemented medium release much less of these same enzymes after shock treatment. Cultures grown with either supplementation show total release of these enzymes upon conversion to spheroplasts, demonstrating that the enzymes are in the periplasmic space in both cases. Cultures grown with either oleate or elaidate as fatty acid source were washed and suspended in medium containing the other isomer. The change from oleate to elaidate resulted in a rapid decrease in ability of the cells to release the three enzymes after osmotic shock so that within a 25% increase in cell mass the culture responded to osmotic shock as would a culture grown overnight in elaidate-supplemented medium. The reverse experiment resulted in a gradual increase in the ability of the cells to respond to osmotic shock. The outer membrane of E. coli is altered by the incorporation of elaidate, as indicated by electron microscopic data.  相似文献   

3.
Unsaturated fatty acid auxotrophs of Escherichia coli are able to use only unsaturated fatty acids of the cis configuration as the required growth supplement. A mutation in the fatA gene allows such auxotrophs to utilize unsaturated fatty acids with a trans double bond as well as fatty acids having a cis double bond. The fatA gene was mapped to min 69 near argG, and the allele studied (fatA1) was found to be dominant over the wild-type gene. fatA1 mutant strains grew at similar rates when supplemented with elaidate (trans-9-octadecenoate) or oleate (cis-9-octadecenoate). The fat+ strain, however, lysed when supplemented with the trans fatty acid. Physiological characterization of the fatA mutant strain was undertaken. The mutation appeared not to be involved with long-chain fatty acid transport. Introduction of lesions in known fatty acid transport genes abolished trans fatty acid utilization in the fatA mutant strain. Also, growth characteristics of the fat+ and the fatA1 mutant strains on elaidate as the sole carbon source were identical, which indicated comparables rate of fatty acid accumulation. The mutation appeared to be involved with recognition of the trans configuration after uptake into the cell. The levels of trans fatty acid incorporation into the phospholipids of the fat+ and the fatA strains differed considerably, with the mutant incorporating much higher levels. No significant accumulation of elaidate into nonphospholipid cellular components was observed. The fatA mutation did not appear to be involved with the cellular metabolic state, as cyclic AMP had no effect on the ability of the strains to utilize trans fatty acids.  相似文献   

4.
Origin Recognition Complex (ORC) is a candidate initiator of chromosomal DNA replication in eukaryotes. We recently reported that cardiolipin inhibits the interaction of Origin Recognition Complex ORC with origin DNA, as is the case of DnaA, the initiator of chromosomal DNA replication in prokaryotes. We report here that another acidic phospholipid, phosphatidylglycerol (PG), also inhibits the interaction. Synthetic PG with only unsaturated fatty acids inhibits ORC-binding to origin DNA more strongly than PG with only saturated fatty acids. On the other hand, phosphatidylcholine (neutral phospholipid) does not affect the ORC-origin interaction, regardless of the presence of saturated or unsaturated fatty acids. These results suggest that an acidic moiety and unsaturated fatty acids are important factors for the inhibitory effect of phospholipids on ORC binding to origin DNA, as is the case for DnaA. The inhibitory effect of cardiolipin on ORC binding to origin DNA was more apparent at 30 degrees C than at 4 degrees C. Furthermore, chlorpromazine restored the ORC-origin interaction in the presence of cardiolipin. Since the presence of unsaturated fatty acids, low incubation temperatures, and the addition of chlorpromazine all decrease membrane fluidity, these results suggest that membrane fluidity is important for the inhibitory effect of acidic phospholipids on ORC-binding to origin DNA, as is the case for DnaA.  相似文献   

5.
Various unsaturated fatty acids had different effectiveness for maintaining the continued replication of functional mitochondria in an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae (KD115). Certain isomers of octadecenoic acid (i.e., cis-9) and eicosatrienoic acid (i.e.,cis-8,11,14) permitted continued replication of mitochondria and provided cultures that contained only 4 to 5% cells that formed petite colonies. On the other hand, cultures grown with cis-12- or cis-13-octadecenoic acid or cis-11,14,17-eicosatrienoic acid, produced a 12- to 16-fold greater frequency of petite mutants (50-60%) after 8 to 10 generations of growth. The production of the petite mutants occurred despite adequate incorporation of these unsaturated fatty acids into cellular phospholipids and an apparently normal ability to undergo the initial steps in the induction of cellular respiration. The evidence suggests that some cellular processes necessary for continued mitochondrial replication depend on the structural features of the fatty acyl chains as well as the overall content of unsaturated fatty acids in membrane phospholipids. Impairment of that process by certain inadequate fatty acids or by an inadequate supply of a suitable fatty acid leads to a permanent loss of the mitochondrial genome from the cells of subsequent generations.  相似文献   

6.
All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding delta9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis. OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy.  相似文献   

7.
The permeability properties of liposomes prepared at pH 8.7 from a fatty acid and either methyl oleate or methyl elaidate, with or without cholesterol, were investigated. The fatty acids used were oleic acid, elaidic acid, and the selenium-containing fatty acids 9-selenaheptadecanoic acid and 13-selenaheneicosanoic acid. The liposomes trapped sucrose and carboxyfluorescein. Their volume change resulting from osmotic shock was directly proportional to the change in absorbance (light scattering). Liposomes prepared from oleic acid and either methyl oleate or methyl elaidate underwent osmotic swelling much more slowly than liposomes prepared from elaidic acid and either methyl oleate or methyl elaidate. Incorporation of cholesterol decreased the initial rate of erythritol permeation, especially in liposomes containing methyl oleate. The swelling rates of liposomes prepared with the selenium-containing fatty acids indicated that incorporation of methyl elaidate gave more tightly packed bilayers than did incorporation of methyl oleate. The effect of cholesterol on the initial rate of erythritol influx was greater in oleic acid and elaidic acid liposomes than in selenium-containing fatty acid liposomes, indicating that the large bulk of the selenium heteroatom suppresses the ability of cholesterol to interact with the hydrocarbon chain.  相似文献   

8.
Alteration of the fatty acid composition of monolayer cultures of LM cells grown in chemically defined medium was achieved by supplementation with fatty acids complexed to bovine serum albumin. Phospholipids containing up to 40% linoleate were found in cells grown in medium containing 20 mu g of linoleate/ml. Incorporation of linoleate into phospholipids reached a plateau after 12-24 hr, and cells remained viable for at least 3-4 days. Although linoleic, linolenic, and arachidonic acids were incorporated into LM cells equally well, only the latter was elongated by these cells under these experimental conditions. Nonadecanoic acid was incorporated to a lesser extent than the polyunsaturated fatty acids. Phosphatidylcholine and phosphatidylethanolamine of LM cells had different fatty acid compositions; phosphatidylethanolamine contained more longer chain and unsaturated fatty acids. Cells were also grown in the absence of choline and presence of choline analogs such as N,N-dimethylethanolamine, N-methylethanolamine, 3-amino-1-propanol, and 1-2-amino-1-butanol. The analog phospholipids in these cells had fatty acid compositions which were intermediate between those of phosphatidylethanolamine and phosphatidylcholine of control cells grown in the presence of choline. Linoleate was found in both phosphatidylcholine and phosphatidylethanolamine of cells supplemented with linoleate. The sphingolipid fraction of these cells, however, did not contain significant amounts of linoleate. When linoleate was present in the phospholipids, compensatory decreases in the oleate and palmitoleate content of phospholipids were observed. Lowering of the growth temperature to 28 degrees produced an increase in unsaturate fatty acid content of the phospholipids. When linoleate was supplied to cells grown at 28 degrees, there was no further increase in the unsaturated fatty acid composition of the phospholipids. Using both fatty acid supplementation and lowered growth temperature, LM cell membranes can be produced which have phospholipids with vastly different fatty acid compositions.  相似文献   

9.
Injection of T5 first-step-transfer DNA was prevented at 29 degrees C, after adsorption to an unsaturated fatty acid mutant grown on elaidate (phase transition at 35 degrees C). Local anesthetics, which increase membrane fluidity, did not inhibit injection above transition temperature and could even reverse the inhibition observed at 29 degrees C on elaidate cells.  相似文献   

10.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

11.
G K Khuller  H Goldfine 《Biochemistry》1975,14(16):3642-3647
The effect of exogenous unsaturated fatty acids on the acyl and alk-1-enyl group composition of the phospholipids of Clostridium butyricum has been examined. Unsaturated fatty acids support the growth of this organism in the absence of biotin. When cells were grown at 37 degrees in media containing oleate or linoleate and a Casamino acid mixture containing traces of biotin, the exogenous fatty acids were found mainly in the alk-1-enyl chains of the plasmalogens with less pronounced incorporation into the acyl chains. However, at 25 degrees in this medium, both the acyl and alk-1-enyl chains contained substantial amounts of the 18:1 supplement plus the C19-cyclopropane chains derived from it. Ak-1-enyl chains in all the major phosphatide classes showed a uniformly high substitution by the oleate supplement in cells grown at 37 degrees. The oleate and C19-cyclopropane content of the acyl chains was more variable among the phosphatide classes. At 37 degrees, trans-9-octadecenoic acid (elaidic acid) also supported growth and was incorporated into both acyl and alk-1-enyl chains at a high level. When cells were grown on oleate at 37 degrees in media containing biotin-free Casamino acids, both the acyl and alk-1-enyl chains had a high level of 18:1 plus C19-cyclopropane chains. In the cells grown at 37 degrees with oleate substantial changes were seen in the phospholipid class composition. There was a large decrease in the ethanolamine plus N-methylethanolamine plasmalogens with a corresponding increase in the glycerol acetals of these plasmalogens. The glycerol phosphoglycerides were also significantly lower with the appearance of an unknown, relatively nonpolar phospholipid fraction.  相似文献   

12.
Escherichia coli K1060, a fatty acid auxotroph unable to either synthesize or degrade unsaturated fatty acids (uFAs), was used to study the effect of membrane fluidity on survival after exposure to ionizing radiation. Using this strain of E. coli, significant alterations in the fatty acid composition of the membrane have been produced and verified by gas chromatography. Linolenic, oleic, elaidic and palmitelaidic acids were the uFAs used. Survival above the transition temperature (Tt) (liquid crystal in equilibrium gel) was comparable for these fatty-acid-supplemented membranes after exposure to gamma-irradiation, whereas gamma-irradiation below Tt resulted ina significant decrease in survival. An oxygen enhancement effect was observed for each experimental condition employed.  相似文献   

13.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

14.
Human skin fibroblasts incorporate and actively desaturate long-chain fatty acids. Growth of these cells in lipid-free medium can be used to enhance delta 9 and delta 6 desaturation of [14C]stearate and [14C]linoleate, respectively. Medium supplementation with cis fatty acids inhibits delta 9 desaturation; effectiveness as inhibitors is linoleate (9c,12c-18:2) greater than oleate (9c-18:1) greater than vaccenate (11c-18:1). Linoelaidate (9t,12t-18:2), trans-vaccenate (11t-18:1) and saturated fatty acids are without effect; elaidate (9t-18:1) appears stimulatory. By contrast, the trans fatty acids elaidate and linoelaidate are potent inhibitors of delta 6 desaturation; inhibition by trans-vaccenate is 50% of that of elaidate. Desaturation of [14C]linoleate is only slightly inhibited by oleate, cis-vaccenate, or (6c,9c,12c)-linolenate. The relative effectiveness of isomeric cis- and trans-octadecenoic acids as inhibitors of delta 9 and delta 6 desaturation in intact human cells is different from that found in microsomal studies. The cell culture system can thus be important in evaluating physiological effects of isomeric fatty acids on cellular metabolic processes.  相似文献   

15.
The membrane phospholipids of an unsaturated fatty acid auxotroph of Escherichia coli were found to undergo turnover. These phospholipids were excreted into the culture medium, and were replaced in the cell with newly synthesized phospholipids. Phospholipids of growing cells supplemented with elaidic acid underwent rapid turnover, while those of cells supplemented with oleate, or cis-vaccenate plus palmitoleate, underwent slow turnover. Starvation for required amino acids stimulated this turnover in the latter two cases. Protein was also lost from growing cells. However, after amino acid starvation this loss ceased while phospholipid turnover continued. Electron micrographs of growing cells indicated that large pieces of membrane-like material were separating from the cell surface.  相似文献   

16.
The role of membrane lipid composition in determining the electrical properties of neuronal cells was investigated by altering the available fatty acids in the growth medium of cultured neuroblastoma X glioma hybrid cells, clone NG108-15. Growth of the cells for several days in the presence of polyunsaturated fatty acids (linoleic, linolenic, and arachidonic) caused a pronounced decrease in the Na+ action-potential rate of rise (dV/dt) and smaller decreases in the amplitude, measured by intracellular recording. Oleic acid had no effect on the action potentials generated by the cells. In contrast, a saturated fatty acid (palmitate) and a trans monounsaturated fatty acid (elaidate) caused increases in both the rate of rise and the amplitude. No changes in the resting membrane potentials or Ca2+ action potentials of fatty acid-treated cells were observed. The membrane capacitance and time constant were not altered by exposure to arachidonate, oleate, or elaidate, whereas arachidonate caused a small increase in membrane resistance. Examination of the membrane phospholipid fatty acid composition of cells grown with various fatty acids revealed no consistent alterations which could explain these results. To examine the mechanism for arachidonate-induced decreases in dV/dt, the binding of 3H-saxitoxin (known to interact with voltage-sensitive Na+) channels was measured. Membranes from cells grown with arachidonate contained fewer saxitoxin binding sites, suggesting fewer Na+ channels in these cells. We conclude that conditions which lead to major changes in the membrane fatty acid composition have no effect on the resting membrane potential, membrane capacitance, time constant, or Ca2+ action potentials in NG108-15 cells. Membrane resistance also does not appear to be very sensitive to membrane fatty acid composition. However, changes in the availability of fatty acids and/or changes in the subsequent membrane fatty acid composition lead to altered Na+ action potentials. The primary mechanism for this alteration appears to be through changes in the number of Na+ channels in the cells.  相似文献   

17.
Adriamycin transport and sensitivity in fatty acid-modified leukemia cells   总被引:5,自引:0,他引:5  
The membrane phospholipids of L1210 murine leukemia cells were modified by supplementing the growth medium with micromolar concentrations of polyunsaturated or monounsaturated fatty acids. This procedure results in enrichment of cellular phospholipids by the supplemented fatty acid. Enrichment with polyunsaturated fatty acids resulted in a marked increase in sensitivity to adriamycin as compared to enrichment with monounsaturated fatty acids. The increased cytotoxicity was directly proportional to the extent of unsaturation of the inserted fatty acid, but there was no difference in cells enriched with n-3 compared with n-6 family fatty acids. To explore the mechanism of this observation, we examined whether augmented uptake of the drug might explain the increased cytotoxicity. The uptake of [14C]adriamycin, which was approximately linear at later time points, was only partially temperature dependent and never reached a steady state. Initial uptake at time points prior to 60 s could not be measured due to high and variable rapid membrane adsorption. Cellular accumulation of drug was greater in the docosahexaenoate 22:6-enriched L1210 cells as compared to oleate 18:1-enriched cells and was about 32% greater after 20 min. When L1210 cells were enriched with six fatty acids of variable degrees of unsaturation, the accumulation of adriamycin was directly correlated with the average number of double bonds in the fatty acids contained in cellular phospholipids. There was no difference in efflux of drug from cells pre-loaded with adriamycin. We conclude that the greater accumulation of adriamycin by the polyunsaturated fatty acid-enriched L1210 cells likely explains the increased sensitivity of these cells to adriamycin compared to 18:1-enriched cells.  相似文献   

18.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.  相似文献   

19.
20.
Fluidity and composition of cell membranes during progression of Mycoplasma canadense cultures grown in a serum-free medium was assessed. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene at 25 degrees C of intact cells and liposomes in the exponential and stationary phases of growth was compared. A decrease in fluidity and an increase in the ratio of saturated to unsaturated fatty acids was detected in cell membranes on aging. Nevertheless, membrane density remained unaltered although the molar ratio of cholesterol to phospholipids decreased. It is proposed that the increase in lipid order is primarily due to the increase in the ratio of saturated to unsaturated membrane fatty acids, being the diminished molar ratio of cholesterol to phospholipids involved in the reduced unsaturated fatty acid uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号