首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A yeast gene for a methionine aminopeptidase, one of the central enzymes in protein synthesis, was cloned and sequenced. The DNA sequence encodes a precursor protein containing 387 amino acid residues. The mature protein, whose NH2-terminal sequence was confirmed by Edman degradation, consists of 377 amino acids. The function of the 10-residue sequence at the NH2 terminus, containing 1 serine and 6 threonine residues, remains to be established. In contrast to the structure of the prokaryotic enzyme, the yeast methionine aminopeptidase consists of two functional domains: a unique NH2-terminal domain containing two motifs resembling zinc fingers, which may allow the protein to interact with ribosomes, and a catalytic COOH-terminal domain resembling other prokaryotic methionine aminopeptidases. Furthermore, unlike the case for the prokaryotic gene, the deletion of the yeast MAP1 gene is not lethal, suggesting for the first time that alternative NH2-terminal processing pathway(s) exist for cleaving methionine from nascent polypeptide chains in eukaryotic cells.  相似文献   

2.
Previous studies have indicated that at least part of the selection of proteins for degradation takes place at a binding site on ubiquitin-protein ligase, to which the protein substrate is bound prior to ligation to ubiquitin. It was also shown that proteins with free NH2-terminal alpha-NH2 groups bind better to this site than proteins with blocked NH2 termini (Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) J. Biol. Chem. 261, 11992-11999). In the present study, we used simple derivatives of amino acids, such as methyl esters, hydroxamates, or dipeptides, to examine the question of whether the protein binding site of the ligase is able to distinguish between different NH2-terminal residues of proteins. Based on specific patterns of inhibition of the binding to ligase by these derivatives, three types of protein substrates could be distinguished. Type I substrates are proteins that have a basic NH2-terminal residue (such as ribonuclease and lysozyme); these are specifically inhibited by derivatives of the 3 basic amino acids (His, Arg, and Lys) with respect to degradation, ligation to ubiquitin, and binding to ligase. Type II substrates (such as beta-lactoglobulin or pepsinogen, that have a Leu residue at the NH2 terminus) are not affected by the above compounds, but are specifically inhibited by derivatives of bulky hydrophobic amino acids (Leu, Trp, Phe, and Tyr). In these cases, the amino acid derivatives apparently act as specific inhibitors of the binding of the NH2-terminal residue of proteins, as indicated by the following observations: (a) derivatives in which the alpha-NH2 group is blocked were inactive and (b) in dipeptides, the inhibitory amino acid residue had to be at the NH2-terminal position. An additional class (Type III) of substrates comprises proteins that have neither basic nor bulky hydrophobic NH2-terminal amino acid residues; the binding of these proteins is not inhibited by homologous amino acid derivatives that have NH2-terminal residues similar to that of the protein. It is concluded that Type I and Type II proteins bind to distinct and separate subsites of the ligase, specific for basic or bulky hydrophobic NH2-terminal residues, respectively. On the other hand, Type III proteins apparently predominantly interact with the ligase at regions of the protein molecule other than the NH2-terminal residue.  相似文献   

3.
Plasmids capable of complementing lap1, lap2 and lap3 mutations [R.J. Trumbly and G. Bradley (1983) J. Bacteriol. 156, 36-48] were isolated from a yeast YEp13 library by screening for activity against the chromogenic aminopeptidase substrate L-leucine beta-naphthylamide in intact yeast colonies. The genomic inserts were shown to contain the structural genes for aminopeptidases yscII, yscIII and yscIV. Plasmids containing the gene encoding aminopeptidase yscII of Saccharomyces cerevisiae, APE2 (LAP1) were analyzed in detail. APE2 was determined by DNA blot analysis to be a single-copy gene located on chromosome XI. The cloned fragment was used to identify a 2.7-kb mRNA. The cloned APE2 gene was sequenced and found to consist of an open reading frame of 2583 bp encoding a protein of 861 amino acids. The protein sequence contains two putative N-glycosylation sites. A significant amino acid similarity was detected between the APE2 gene product and members of the zinc-dependent metallopeptidase gene family. Chromosomal disruption of the APE2 gene completely abolishes the distinct activity band previously identified as aminopeptidase yscII [H.H. Hirsch, P. Suárez-Rendueles, T. Achstetter and D.H. Wolf (1988) Eur. J. Biochem. 173, 589-598] in crude extracts subjected to non-denaturing polyacrylamide gel electrophoresis and subsequent aminopeptidase activity staining. No vital consequence of aminopeptidase yscII absence on cell growth could be detected.  相似文献   

4.
5.
The amino acid sequences of rat ribosomal proteins L27a and L28 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed from the NH2-terminal amino acid sequences of the proteins. L27a contains 147 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 16 476. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 18-22 copies of the L27a gene. The mRNA for the protein is about 600 nucleotides in length. L27a is homologous to mouse L27a (there are 3 amino acid changes) and to yeast L29. Rat ribosomal protein L28 has 136 amino acids (its NH2-terminal methionine is also processed after translation) and has a molecular weight of 15 707. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 9 or 10 copies of the L28 gene. The mRNA for the protein is about 640 nucleotides in length. L28 contains a possible internal duplication of 9 residues. Corrections are recorded in the sequences reported before for rat ribosomal proteins S4 and S12.  相似文献   

6.
Acyl-peptide hydrolase catalyzes the removal of an N alpha-acetylated amino acid residue from an N alpha-acetylated peptide. Two overlapping degenerate oligonucleotide probes based on the sequence of a CNBr tryptic peptide, derived from purified rat acyl-peptide hydrolase, were synthesized and used to screen a rat liver lambda gt11 cDNA library. A 2.5-kilobase cDNA was cloned and sequenced. This clone contained 2364 base pairs of rat acyl-peptide hydrolase sequence but lacked a translational initiation codon. Using a 220-base pair probe derived from near the 5'-end of this almost full-length cDNA to rescreen the library, full-length clones were isolated, which contained an in-frame ATG codon at nucleotides 6-8 and encoded the NH2-terminal sequence, Met-Glu-Arg-Gln.... The DNA sequence encoded a protein of 732 amino acid residues, 40% of which were confirmed by protein sequence data from 19 CNBr or CNBr tryptic peptides. The isolated enzyme is NH2-terminally blocked (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), and based on the NH2-terminal protein sequence deduced from the DNA sequence and the sequence of the most NH2-terminal CNBr peptide, it is likely that the NH2-terminal residue is an acetylated methionine residue, since such residues are frequently juxtaposed to glutamyl residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). The RNA blot analysis revealed a single message of 2.7 kilobases in various rat tissues examined. Although this enzyme is known to be inhibited by diisopropyl fluorophosphate and acetylalanine chloromethyl ketone (Kobayashi, K., and Smith, J. A. (1987) J. Biol. Chem. 262, 11435-11445), no strong similarity in protein sequence has been found with other serine proteases. This result suggests that acyl-peptide hydrolase may be a unique serine protease.  相似文献   

7.
We have determined the nucleotide sequence of the DNA of simian virus 40. The proceeding report (Dhar, R., Reddy, V.B., and Weissman, S.M. (1978) J. Biol. Chem. 253, 612-620) presents the sequence of a portion of the simian virus 40 DNA that overlaps the region encoding the 5' end of the minor structural protein VP2. We report here the sequence of the remainder of the genes for minor structural proteins VP2 and VP3. The results indicate that the mRNA for the two proteins is read in the same phase and the initiation site for VP3 lies within the structural gene of VP2. The codons of the COOH-terminal amino acids of VP2 and VP3 are read in a second phase as the codons of the NH2-terminal amino acids of VP1.  相似文献   

8.
The genes for two large subunit proteins, YmL8 and YmL20, of the mitochondrial ribosome of Saccharomyces cerevisiae were cloned by hybridization with synthetic oligonucleotide mixtures corresponding to their N-terminal amino acid sequences. They were termed MRP-L8 and MRP-L20, respectively, and their nucleotide sequences were determined using a DNA sequencer. The MRP-L8 gene was found to encode a 26.8-kDa protein whose deduced amino acid sequence has a high degree of similarity to ribosomal protein L17 of Escherichia coli. The gene MRP-L20 was found to encode a 22.3-kDa protein with a presequence consisting of 18 amino acid residues. By Southern blot hybridization to the yeast chromosomes separated by field-inversion gel electrophoresis, the MRP-L8 and MRP-L20 genes were located on chromosomes X and XI, respectively. Gene disruption experiments indicate that their products, YmL8 and YmL20 proteins, are essential for the mitochondrial function and the absence of these proteins causes instability of the mitochondrial DNA.  相似文献   

9.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

10.
11.
We have isolated the yeast ATP2 gene encoding the beta-subunit of mitochondrial ATP synthase and determined its nucleotide sequence. A fusion between the N-terminal 15 amino acid residues of beta-subunit and the mouse cytosolic protein dihydrofolate reductase (DHFR) was transcribed and translated in vitro and found to be transported into isolated yeast mitochondria. A fusion with the first 35 amino acid residues of beta-subunit attached to DHFR was not only transported but also proteolytically processed by a mitochondrial protease. Amino acid substitutions were introduced into the N-terminal presequence of the beta-subunit by bisulphite mutagenesis of the corresponding DNA. The effects of these mutations on mitochondrial targeting were assessed by transport experiments in vitro using DHFR fusion proteins. All of the mutants, harbourin from one to six amino acid substitutions in the first 14 residues of the presequence, were transported into mitochondria, though at least one of them (I8) was transported and proteolytically processed at a much reduced rate. The I8 mutant beta-subunit also exhibited poor transport and processing in vivo, and expression of this mutant polypeptide failed to complement the glycerol- phenotype of a yeast ATP2 mutant. More remarkably, the expression of I8 beta-subunit induced a more general growth defect in yeast, possibly due to interference with the transport of other, essential, mitochondrial proteins.  相似文献   

12.
Two forms of small, interstitial proteoglycans have been isolated from bovine articular cartilage and have different core proteins, based on NH2-terminal analysis and peptide mapping (Choi, H. U., Johnson, T. L., Pal, S., Tang, L-H., Rosenberg, L. C., and Neame, P. J. (1989) J. Biol. Chem. 264, 2876-2884). These proteoglycans have been called PG I and PG II. Since they were first described, they have also been called "biglycan" (PG I), "decorin," and "DS-PG" (PG II). This report describes the primary structure of PG I from bovine articular cartilage. The protein core consists of 331 amino acids with a molecular mass of 37,280 Da. The amino acid sequence shows 55% identity to the cDNA-derived sequence of PG II from bovine bone. There are four discrete domains in the amino acid sequence. Domain 1, at the NH2 terminus (approximately 23 amino acids), contains two sites of attachment of dermatan sulfate, both of which match the consensus sequence of Asp/Glu-X-X-Ser-Gly-hydrophobic. Neither of these sites is substituted to 100% with glycosaminoglycan in native PG I. Domain 2, near the NH2 terminus and containing approximately 28 amino acids, has a cysteine pattern similar to a domain near the COOH terminus of mouse metallothionein and contains at least one disulfide bond (between the first and fourth cysteine residues). The majority of the core protein of PG I (domain 3) is a leucine-rich domain containing ten repeating units (approximately 231 amino acids). Patthy [1987) J. Mol. Biol. 198, 567-577) has shown that for PG II, the majority of domain 3 shows considerable similarity to leucine-rich alpha 2-glycoprotein (LRG) from serum. Domain 2 of PG I or PG II also has an analog in LRG, in that it has two cysteines in a similar place. The major motif in the PG I described here, in PG II and in LRG, is a series of leucine-rich repeats. PG I and PG II both contain 10 leucine-rich repeats which are 14 amino acids long and which are somewhat irregularly spaced, while LRG contains 9 leucine-rich repeats spaced 10 amino acids apart. Other proteins which contain leucine repeats are the platelet glycoprotein Ib, which is involved in platelet adherence to subendothelium (eight repeats in the alpha chain and two in the beta chain), the protein encoded by the Toll gene (involved in lateral and ventral spatial organization in Drosophila) and chaoptin (a protein involved in Drosophila photoreceptor morphogenesis).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The primary structure of rat ribosomal protein L35   总被引:3,自引:0,他引:3  
The amino acid sequence of the rat 60S ribosomal subunit protein L35 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. Ribosomal protein L35 has 122 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 14,412. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 15-17 copies of the L35 gene. The mRNA for the protein is about 570 nucleotides in length. Rat L35 is related to the archaebacterial ribosomal proteins Halobacterium marismortui L33 and Halobacterium halobium L29E; it is also related to Escherichia coli L29 and to other members of the prokaryotic ribosomal protein L29 family. The protein contains a possible internal duplication of 11 residues.  相似文献   

14.
15.
K Mihara  R Sato 《The EMBO journal》1985,4(3):769-774
We have cloned a full-length cDNA for yeast porin, the major outer mitochondrial membrane protein from Saccharomyces cerevisiae, and determined its nucleotide sequence. The primary structure of the protein, deduced from the nucleotide sequence, consisted of 283 amino acid residues and its NH2-terminal sequence, Met-Ser-Pro-Pro-Val-Tyr-Ser, coincided with that determined by Edman degradation for yeast porin, except that the initiator methionine was missing in the mature protein. The deduced sequence had an overall polarity index of 46.3%, a value which falls in the normal range for soluble proteins. An evaluation of hydropathy of the protein indicated that the NH2-terminal one third was relatively hydrophilic and the rest of the molecule was rather hydrophobic. An interesting finding was that the NH2-terminal region of yeast porin (consisting of some 50 amino acid residues) shows structural features that resemble those of the corresponding portion of 70-kd protein, which is also a yeast outer mitochondrial membrane protein. We postulate that this NH2-terminal sequence, like that of 70-kd protein, is required for targeting the porin to the outer mitochondrial membrane.  相似文献   

16.
The cytochrome b(5) of the body wall of adult Ascaris suum, a porcine parasitic nematode, is a novel type of cytochrome b(5). It is a soluble protein that lacks the COOH-terminal membrane-anchoring domain found in erythrocyte cytochrome b(5), but possesses an NH(2)-terminal extension (presequence) of 30 amino acids that are missing from the 82-residue protein purified from the nematode tissues [Yu, Y., Yamasaki, H., Kita, K., and Takamiya, S., 1996, Arch. Biochem. Biophys. 328, 165-172]. The nematode cytochrome b(5) is, therefore, probably synthesized as a precursor protein whose presequence is cleaved to form a mature protein, but the localization of the mature protein is still unknown. To investigate the processing of the putative precursor protein, the wild-type precursor of nematode cytochrome b(5) with a complete presequence (b5wt) and its NH(2) terminus-truncated derivatives, b5Delta18 and b5Delta28, with 18 and 28 residues deleted, respectively, were expressed using pET-28a(+) vector in Escherichia coli. As expected, all transformants, tb5wt, tb5Delta18, and tb5Delta28, produced recombinant proteins with a histidine-tagged NH(2)-terminal extension. However, only the recombinant protein with the full-length presequence, produced in tb5wt, was correctly processed and transported to the periplasm, from which the majority of the induced product was purified as a mature protein chemically and functionally identical to the native protein purified from the nematode body wall. These results clearly show that the nematode histidine-tagged presequence functions as a signal peptide in E. coli.  相似文献   

17.
18.
The amino acid sequence of Acanthamoeba profilin   总被引:15,自引:0,他引:15  
The complete amino acid sequence of Acanthamoeba profilin was determined by aligning tryptic, chymotryptic, thermolysin, and Staphylococcus aureus V8 protease peptides together with the partial NH2-terminal sequences of the tryptophan-cleavage products. Acanthamoeba profilin contains 125 amino acid residues, is NH2-terminally blocked, and has trimethyllysine at position 103. At five positions in the sequence two amino acids were identified indicating that the amoebae express at least two slightly different profilins. Charged residues are unevenly distributed, the NH2-terminal half being very hydrophobic and the COOH-terminal half being especially rich in basic residues. Comparison of the Acanthamoeba profilin sequence with that of calf spleen profilin (Nystrom, L. E., Lindberg, U., Kendrick-Jones, J., and Jakes, R. (1979) FEBS Lett. 101, 161-165) reveals homology in the NH2-terminal region. We suggest, therefore, that this region participates in the actin-binding activity.  相似文献   

19.
20.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号