首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: :The kinetic mechanism of bovine brain choline acetyltransferase has been studied using acetylaminocholine as a dead-end inhibitor and di-methylaminoethanol as an alternate substrate. Acetylaminocholine inhibition is competitive with respect to acetylcholine and noncompetitive with respect to choline. Dimethylaminoethanol exhibits one-sixth the Vmax obtained with choline. These results suggest that the reaction obeys a sequential random kinetic mechanism. Salt activation of the enzyme is nonspecific with respect to monovalent anions, and results in a parallel increase in the Km for choline and the Ki for acetylcholine. These results support the conclusion that salt activation of choline acetyltransferase is a nonspecific effect and that no specific chloride ion regulation of this enzyme occurs in vivo .  相似文献   

2.
Abstract— Choline acetyltransferase catalyzes the formation of acetylcholine from choline and acetyl-CoA in cholin-ergic neurons. The present study examined conditions for modulation of kinase-mediated phosphorylation of this enzyme. By using a monospecific polyclonal rabbit anti-human choline acetyltransferase antibody to immunoprecipi-tate cytosolic and membrane-associated subcellular pools of enzyme from rat hippocampal synaptosomes, we determined that only the cytosolic fraction of the enzyme (67,000 ± 730 daltons) was phosphorylated under basal, unstimulated conditions. The quantity of this endogenous phosphoprotein was dependent, in part, upon the level of intracellular calcium, with 32Pi incorporation into the enzyme in nerve terminals incubated in nominally calcium-free medium only 43 ± 7% of control. The corresponding enzymatic activity of cytosolic choline acetyltransferase did not appear to be altered by lowered cytosolic calcium, whereas membrane-associated choline acetyltransferase activity was decreased to 58 ± 11 % of control. Depolarization of synaptosomes with 50 μ M veratridine neither altered the extent of phosphorylation or specific activity of cytosolic choline acetyltransferase, nor induced detectable phosphorylation of membrane-associated choline acetyltransferase, although the specific activity of the membrane-associated enzyme was increased to 132 ± 5% of control. In summary, phosphorylation of choline acetyltransferase does not appear to regulate cholinergic neurotransmission by a direct action on catalytic activity of the enzyme.  相似文献   

3.
Abstract— Crude or purified rat brain choline acetyltransferase (ChAc) is activated by anions. Among anions, Cl is the most effective and may promote an up to 60 fold increase in V max. In the absence of Cl, at low ionic strength, acetylcholine (ACh) is a good ChAc inhibitor ( K i= 0.310 m m ). The ACh inhibition becomes negligible when Cl is increased to 145 m m (ACh K i= 45 m m ). These results are discussed in terms of regulation of ACh synthesis by nerve terminals. It is proposed that ChAc is part of a presynaptic membrane bound multienzymatic complex under direct control of the ion fluxes promoted by nerve impulses.  相似文献   

4.
Abstract— The effects of salt on the properties of human placental choline acetyltransferase have been examined. Increases in enzyme activity, thermal denaturation and susceptibility to proteolysis can be related to increases in ionic strength, rather than to specific salt effects. Increased ionic strength increases the maximal velocity (Km) of the reaction, with no change in the kinetic parameter Vmax/Km (choline). The pH-Km profile, measured over the range of 6.5–8.0, indicates the requirement of a dissociated acidic residue whose pKa is below 7.5 at high ionic strength, and a protonated residue whose pKa is above 7.5 at low ionic strength. It is proposed that the conformation of the enzyme is different at high ionic strength and at low ionic strength, and that these different conformational states of the enzyme result in different rate-determining steps of the reaction.  相似文献   

5.
Activation of Choline Acetyltransferase by Salts   总被引:4,自引:0,他引:4  
IONIZED salts affect choline acetyltransferase, EC 2.3.1.6 (ChA), in two important ways. They change the equilibrium between soluble and membrane-bound ChA, in preparations of ruptured nerve endings1,2. Further, the rate of synthesis of acetylcholine by soluble ChA and the Michaelis constants for this reaction depend on the concentration of salts3. The relevance of these effects to the role of ChA in nerve function and the mechanisms responsible are unknown. Our observations clarify the effect of salts on the soluble enzyme.  相似文献   

6.
Abstract: The kinetic parameters, Km and Vmax, for the acetylation of choline and several close analogues were determined by using (a) purified choline acetyltransferase and (b) a hypotonically lysed synaptosomal extract prepared from the electric organ of Torpedo marmorata. Whereas the Km for choline was similar in both cases (0.51 and 0.42 m m ), the crude enzyme showed a three- to fivefold greater affinity for its analogues than the purified enzyme, the activity decreasing rapidly with increased N -alkyl substitution. Homocholine was a poor substrate, but was clearly acetylated by both preparations. The effect of salt on analogue acetylation by the crude enzyme was studied by increasing NaCl concentration from zero to 150 m m . There was an increase in both Km and Vmax for all substrates; choline, N,N,N -dimethylmonoethylaminoethanol, -monomethyldiethylaminoethanol and -dimethylmonobutylaminoethanol showed the greatest changes, whilst N,N,N -triethylaminoethanol and -dimethylmonopropylaminoethanol and homocholine were much less affected. However, in all cases, the kinetic parameter Vmax / Km remained unchanged. The maximal velocities of the different substrates varied more under conditions of high than of low salt. Sodium chloride up to 300 m m had no effect on the amount of enzyme which was bound to membranes in the synaptosomal extract. It is concluded that choline acetyltransferase has a high degree of substrate specificity, which is slightly altered by purification. The effects of salt cannot be explained as a consequence of nonspecific ionic association with membranes.  相似文献   

7.
CHOLINE ACETYLTRANSFERASE ACTIVITY IN GUINEA-PIG HEART IN VITRO   总被引:3,自引:3,他引:0  
Abstract— Choline acetyltransferase (EC 2.3.1.6) catalyses the following reversible reaction: acetyl coenzyme A + choline acetylcholine + coenzyme A. Enzyme activity in the atria and ventricles of guinea-pig heart varied independently of the biochemically related carnitine acetyltransferase (EC 2.3.1.7). Choline acelyltransferase activity was greatest in right atrium, intermediate in right ventricle and left atrium and lowest in left ventricle (405. 2-33. 177 and I 33 nmol min-1 g-1, respectively). Carnitine acetyltransferasc activity was greatest in the right and left ventricle and least in the right and left atria (8-86. 8-27, 3-18 and 2-38 mmol min-1g-1. respectively). Carnitine acelyltransferase activity was 800- to 6000-fold greater than that of the choline acetyltransferase. depending on the chamber. Bromoacctylcholine inhibited acetylcholine. but not acetylcarnitine biosynthesis in vitro. Contrariwise, acetylcarnitine inhibited carnitine, but not choline acetyltransferase. These results demonstrate the feasibility and specificity of measuring the differences in choline acetyltransferase activity in dialysed homogenates prepared from the four chambers of the heart.  相似文献   

8.
Abstract— It is shown that transketolase activities in red blood cells and whole brain of normal and thiamine-deficient rats correlate well with heart frequencies.
The effect of thiamine depletion on the levels of acetylcoenzyme A (acetyl-CoA) and acetylcholine (ACh), and on the activities of pyruvate dehydrogenase, choline acetyl-transferase and acetylcholine esterase was studied in whole brains of thiamine-deficient, thiamine-supplemented ad libitum and pair-fed rats. The concentrations of acetyl-CoA and ACh decreased in thiamine-deficient brains by 42 and 35 per cent, respectively.
Total pyruvate dehydrogenase activity did not change during vitamin B1 deficiency. The 'resolved' enzyme, reconstituted with thiamine diphosphate, had an association constant of 5.4 × 10−6 m . Choline acetyltransferase and acetylcholine esterase activities remained unchanged in thiamine deficiency.
Possible mechanisms which could explain the reduced Ach levels in vitamin B1 deficiency are discussed.  相似文献   

9.
Abstract— A fluorometric assay for choline acetyltransferase has been developed. This assay is based on coupling the choline acetyltransferase dependent formation of acetyl-CoA from acetylcholine and coenzyme A, to the reactions catalyzed by the enzymes citrate synthase and malic dehydrogenase. Although this assay is not as sensitive as previously described radiometric assays, it can be conveniently used during enzyme purification.
Employing this assay method, choline acetyltransferase has been purified from human placenta to a specific activity of 92.7 μmol acetylcholine formed/min/mg protein.  相似文献   

10.
Abstract— Activation of nerve elements in vivo and in vitro is associated with an increased rate of choline uptake by a Na+-dependent high affinity transport system. Following the methodology of B arker (1976), rat cortical synaptosomes were depolarized (37°C, 10min) by 25mM-KCl in the presence of CaCl2 (1 mM) or other divalent cations. After reisolation by centrifugation, the rate of 3H-choline uptake (1.25μM) was measured by Millipore filtration. KCl treatment alone failed to accelerate the rate of uptake in the reisolated synaptosomes. CaCl2, BaC12 or SrCl2 (but not MgCl2 or MnCl2) were necessary (1 mM) to observe the KCl induced acceleration. Moreover, RbCl, but not LiCl or CsCl, also produced the calcium-dependent rate enhancement in the reisolated synaptosomes. The conditions mediating the enhanced rate of choline uptake correlated strongly with those associated with neurotransmitter release. To test this possibility, synaptosomal acetylcholine content was measured in response to the various salt treatments. Treatment with KCI (25 mM) and CaCl2 (1 mM), but not KCl alone, reduced the synaptosomal acetylcholine content from 154 to 113pmol/mg protein. The respective rates of choline uptake increased about 60%. The increased rate was reversed by incubation with 50 μM-choline followed by synaptosome reisolation. This procedure also normalized the acetylcholine content. In summary, the rate of choline uptake by the high affinity choline uptake system is inversely related to the synaptosomal acetylcholine content.  相似文献   

11.
THE DETERMINATION OF PICOMOLE AMOUNTS OF ACETYLCHOLINE IN MAMMALIAN BRAIN   总被引:21,自引:9,他引:12  
Abstract— In any assay for the determination of acetylcholine based on the conversion of choline to a product, the immediate problem is the removal of endogenous choline. Other published enzymatic assays have taken advantage of electrophoresis to accomplish this goal. In the assay to be described, this is accomplished by the enzymatic phosphorylation of endogenous choline by choline kinase. Once this reaction is complete, endogenous acetylcholine is simultaneously hydrolysed and then phosphorylated with [32P]ATP. The labelled product [32P]phosphorylcholine is separated from the labelled substrate by precipitation of the ATP and further separation is accomplished on microcolumns of ion exchange resin. Using this methodology, picomole amounts of acetylcholine, derived from tissue, can be measured.  相似文献   

12.
Abstract— Acetylcholine, its precursor (choline), and the enzymes of its biosynthesis and degradation (choline acetyltransferase and acetylcholinesterase, respectively) have been studied and quantified in extracts of several regions of the nervous system of the lobster and in single, isolated axons of identified efferent excitatory, efferent inhibitory and afferent sensory neurons. The choline acetyltransferase is a soluble enzyme similar to that from other species. The predominant acetylcholine-hydrolysing enzyme is largely membrane-bound and has been characterized as a specific acetylcholinesterase. A single peak of acetylcholinesterase activity can be detected upon velocity sedimentation analysis of Triton X-100-treated extracts of all regions of the nervous system. Choline acetyltransferase distribution parallels that of sensory neural elements, and its specific activity shows nearly a 500-fold difference from the richest to the poorest neural source. Acetylcholinesterase levels span only a 23-fold range, and activity is found in all neural regions, including those free of known sensory components. A radiochemical microassay for choline and acetylcholine in the range of 20–2000 pmol is described in detail. All 3 types of axons contain comparable levels of choline ( ca. 2 pmol/μg protein), but acetylcholine is asymmetrically distributed. Efferent axons contain no detectable acetylcholine, while sensory axons from abdominal muscle receptor organs have an average of 1·9 pmol/μg protein. Choline acetyltransferase is similarly distributed; sensory axons show at least 500-fold greater activity than efferent axons. Acetylcholinesterase is nearly uniformly distributed among the three types of fibres. These results are discussed in terms of a general view of transmitter accumulation in single neurons.  相似文献   

13.
Abstract— Acetylcholine synthesis in homogenates of human intercostal muscle was measured by a radiochemical method. Choline acetyltransferase activity in control muscle was about 20 nmol.g−1.h−1. The enzyme was found only in the endplate area of the muscle. At high substrate concentrations its activity was overshadowed by the acetylcholine synthesizing activity of a different enzyme not saturated by 10 m m -choline. The nonspecific enzyme was present at and away from the endplate area. Choline acetyltransferase in parasternal samples of intercostal muscle from myasthenia gravis patients was about 2.5 times higher than in samples, taken from a more lateral location, of control patients, but the K m for choline was not altered (0.24 m m ). It is suggested that in myasthenia gravis the shortage of acetylcholine receptors is partially compensated for by increased synthesis, storage, and release of the transmitter.  相似文献   

14.
Abstract— Choline acetyltransferase from bovine brain has been extensively purified to a specific activity of 2.5 μmol ACh/min mg protein. Attempts to isolate an acetyl enzyme intermediate after incubation of the enzyme with [1-14C]acetyl-CoA were unsuccessful. Such an intermediate could only be isolated using a 30-fold less purified enzyme preparation. The protein, binding 14C in this preparation, did not correspond to choline acetyltransferase as shown by disc-electrophoresis. The highly purified enzyme could, however, be labelled when choline acetyltransferase was immobilized on a mercuribenzoate sepharose gel and incubated with [1-14C]acetyl-CoA. Subsequently, the immobilized labelled enzyme or the labelled enzyme which had been released by cysteine from the gel. formed ACh after incubation with choline. The labelling and the following formation of [14C]ACh was pH dependent.
Masking htstidine residues of the enzyme with diethylpyrocarbonate almost abolished the labelling of the immobilized enzyme and completely abolished the formation of [14C]ACh. Enzyme inhibited with 5.5'-dithiobis(2-nitrobenzoate) was partially reactivated when the thionitrobenzoatederivative was cleaved by KCN treatment to a thiocyanatederivalive. A reaction mechanism for ChAT is proposed based on the present data.  相似文献   

15.
Polysiphonia paniculata Montagne is an intertidal red alga known to produce large amounts of the compound dimethylsulfoniopropionate (DMSP). Conversion of this substrate into dimethylsulfide is accomplished in P, paniculata by an enzyme called DMSP lyase (dimethylpropiothetin dethiomethyla.se (4.4.1.3)). DMSP lyase has been purified and characterized from P. paniculata. Enzymie activity is found in two different proteins: the larger with a molecular weight of 9.26 ± 104 daltons and the smaller with a molecular weight of 3.65 ± 104 daltons. Specific activity of the enzyme is 526 μmols min−1mg−1 for the smaller protein a nd 263 μmols min −1 mg−1 for the la rger protein. The Michaelis-Menten constant (Km) is 72.8 μM ± 17.15 and the vmax is 1.62 μmols min−1± 0.928 for the 92.6-kDa protein. The p1 of the larger protein is 5.8 and 5.9 for the smaller protein. Interaction with cysteine protease inhibitors L-trans-epoxysuccinyl-leucylamido (4-guanidino)-butane, dithiobis-(2-nitrobenzoate), or N -ethylmaleimide inactivated enzyme activity. The presence of either magnesium or calcium with DMSP lyase enhanced activity al concentrations between 20 and 40 μM but had little effect above these levels. Addition of the divalent chelators ethylenebis(oxyethylenenitrilo) tetraacetic acid and ethylenediaminetetraacetate decreased activity of the enzyme, but activity was restored when either chelator was removed and magnesium or calcium was added to the enzyme .  相似文献   

16.
Abstract— Purification of choline acetyltransferase (ChAc) from heads of Drosophila melanogaster , the richest known source of ChAc, has been accomplished. The stability of the enzyme was preserved by working with a concentration of protein above 0.1 mg/ml. The purification was carried out with ammonium sulfate fractionation and column chromatography on QAE-Sephadex, CoA-Sepharose, G-200 Sephadex, and PCMB-Sepharose. In a procedure using 100 g of Drosophila heads, the specific activity of the crude homogenate was 0.028 μmol/min/mg protein and that of the final product was 43 μmol/min/mg protein, representing a 1500 fold purification. A single protein band, containing all of the ChAc activity, was seen by polyacrylamide gel electrophoresis. A sharp pH optimum at 7.2 was observed. Apparent Km's for acetyl CoA and choline were 90 μM and 47 μM , respectively. The molecular weight was determined to be 69,000. Isoelectric focusing of extracts of Drosophila heads showed only one peak of choline acetyltransferase activity with an apparent pi of 5.1.  相似文献   

17.
Abstract— The effects of botulinum and tetanus toxins on the activity of choline acetyltransferase present in the motor nerve terminals of fast and slow skeletal muscle in the mouse were investigated. There was no change in the activities of choline acetyltransferase in either muscle after the injection of botulinum toxin but tetanus toxin caused a rise in the activity of the enzyme in fast muscle. Botulinum toxin is known to inhibit the release of acetylcholine and whilst neuromuscular transmission is blocked the motor nerves sprout and form new end-plates. Tetanus toxin has been shown to cause hyperactivity of motor neurons. The nerve growth caused by the botulinum toxin did not result in increased choline acetyltransferase levels in the muscles, whereas the synaptic hyperactivity caused by tetanus was associated with increased enzyme levels.  相似文献   

18.
A TECHNIQUE FOR THE STUDY OF ACETYLCHOLINE TURNOVER IN MOUSE BRAIN IN VIVO   总被引:12,自引:7,他引:5  
Abstract— —A method to measure the rate of acetylcholine turnover in mouse brain in vivo has been developed. It is based on the formation of labelled acetylcholine from intravenously injected labelled choline. The isotopic dilution of choline in the brain has been measured by assaying endogenous choline in the brain by an enzymatic method using tritium-labelled acetyl-CoA and purified choline acetyltransferase.
The rate of acetylcholine turnover in the brain could be calculated at 50 n-moles acetylcholine/g/min in conscious mice. In anaesthetized mice and in mice treated with oxotremorine, a decrease of acetylcholine turnover to about 10 n-moles/g/min was found.  相似文献   

19.
Rats treated with reserpine show increased Vmax for the high affinity uptake of choline into small slices of corpus striatum. The choline acetyltransferase activity of whole homogenates of striatum is also increased. These changes are consistent with increased cholinergic neuronal activity in the striatum and seem likely to be adaptations mediating increased rates of synthesis of acetylcholine. The maximal increases found occurred concurrently, consistent with coupling of the high affinity uptake of choline and its acetylation in cholinergic nerve terminals of the rat. That increased high affinity uptake is accompanied by increased choline acetyltransferase activity, suggests the input of choline is not the sole determinant of rates of synthesis of acetylcholine, in spite of the large Vmas for striatal choline acetyltransferase, compared with that for high affinity uptake. These results seem best explained by kinetic coupling, in the rat, of the high affinity uptake of choline with a limited pool of choline acetyltransferase preferentially localised at the nerve terminal plasma membrane.  相似文献   

20.
Abstract— Acetylcholine, choline and choline acetyltransferase activity were measured in the whole brains of normal and hypothyroid rats during development. At 1 day postpartum, brain acetylcholine was 73 per cent of adult levels. Propylthiouracil-induced hypothyroidism up to age 20 days did not alter brain acetylcholine concentrations, but at 30 days resulted in significantly decreased levels. At day 1, brain choline was 20 per cent higher than adult levels and decreased between days 8 and 10. In hypothyroid rats this phenomenon did not occur until days 15–20. At day 1 postnatally, choline acetyltransferase activity was only 7 per cent of adult levels, then between days 5 and 20 rose to 77 per cent of adult levels. Beginning at day 8, hypothyroidism resulted in significantly decreased enzyme levels. This effect could be reversed at day 17 by concurrent tri-iodothyronine substitution therapy. In hypothyroid rats, maximum brain choline acetyltransferase activity was 30 per cent less than normal adult levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号