首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Root graviresponsiveness in normal and carotenoid-deficientmutant seedlings of Zea mays was not significantly different.Columella cells in roots of mutant seedlings were characterizedby fewer, smaller, and a reduced relative volume of plastidsas compared to columella cells of normal seedlings. Plastidsin columella cells of mutant seedlings possessed reduced amountsof starch. Although approximately 10 per cent of the columellacells in mutant seedlings lacked starch, their plastids werelocated at the bottom of the cell. These results suggest that(i) carotenoids are not necessary for root gravitropism, (ii)graviresponsiveness is not necessarily proportional to the size,number, or relative volume of plastids in columella cells, and(iii) sedimentation of plastids in columella cells may not resultdirectly from their increased density due to starch content.Plastids in columella cells of normal and mutant seedlings wereassociated with bands of microtubule-like structures, suggestingthat these structures may be involved in ‘positioning’plastids in the cell. Zea mays, graviperception, graviresponsiveness, carotenoids, vp-9 mutant, columella cell, roots  相似文献   

2.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

3.
In order to quantify the ultrastructural changes associated with cellular differentiation, we have performed a morphometric analysis of the ultrastructure of the calyptrogen, columella, and peripheral cells of the root cap of Zea mays. The relative volumes of the nucleus, nucleolus, and mitochondria in the protoplasm gradually decrease as a cell moves through the root cap. The relative volume of plastids increases 240% during the differentiation of calyptrogen cells into columella cells. This increase is transient, however, since the relative volume of plastids as well as starch in plastids decreases markedly as columella cells differentiate into peripheral cells. Dictyosomes and spherosomes increase more gradually than plastids, peaking in relative volume in the innermost peripheral cells (PCI). The relative volume of the vacuome decreases as calyptrogen cells differentiate into columella cells, after which it increases during the differentiation of peripheral cells. By the time the outermost peripheral cells (PCIII) are sloughed from the cap, the relative volume of the vacuome has almost tripled. These results indicate that each cell type comprising the root cap of Zea mays is characterized by a distinctive ultrastructure. Furthermore, the ultrastructural changes associated with the differentiation of these cells are organelle specific. The results of this study are discussed relative to the function of the various cell types of the root cap.  相似文献   

4.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

5.
Root caps of primary, secondary, and seminal roots of Z. mayscv. Kys secrete large amounts of mucilage and are in close contactwith the root all along the root apex. These roots are stronglygraviresponsive. Secondary and seminal roots of Z. mays cv.Ageotropic are also strongly graviresponsive. Similarly, theircaps secrete mucilage and closely appress the root all alongthe root apex. However, primary roots of Z. mays cv. Ageotropicare non-responsive to gravity. Their caps secrete negligibleamounts of mucilage and contact the root only at the extremeapex of the root along the calyptrogen. These roots become graviresponsivewhen their tips are coated with mucilage or mucilage-like materials.Peripheral cells of root caps of roots of Z. mays cv. Kys containmany dictyosomes associated with vesicles that migrate to andfuse with the plasmalemma. Root-cap cells of secondary and seminal(i.e. graviresponsive) roots of Z. mays cv. Ageotropic are similarto those of primary roots of Z. mays cv. Kys. However, root-capcells of primary (i.e. non-graviresponsive) roots of Z. mayscv. Ageotropic have distended dictyosomal cisternae filled withan electron-dense, granular material. Large vesicles full ofthis material populate the cells and apparently do not fusewith the plasmalemma. Taken together, these results suggestthat non-graviresponsiveness of primary roots of Z. mays cv.Ageotropic results from the lack of apoplastic continuity betweenthe root and the periphery of the root cap. This is a resultof negligible secretion of mucilage by cells along the edgeof the root cap which, in turn, appears to be due to the malfunctioningof dictyosomes in these cells. Corn, dictyosomes, mucilage, root gravitropism, Zea mays cv. Ageotropic, Zea mays cv. Kys  相似文献   

6.
Primary roots of Zea mays cv. Amylomaize were less graviresponsive than primary roots of the wild-type Calumet cultivar. There were no significant differences in: 1) the partitioning of volume to organelles in columella cells, 2) the size or density of amyloplasts, or 3) rates and overall patterns of organelle redistribution in horizontally-oriented roots of the two cultivars. Amyloplasts and nuclei were the only organelles whose movement correlated positively with the onset of root gravicurvature. However, the onset of gravicurvature was not directly proportional to the average sedimentation rate of amyloplasts, since amyloplasts sedimented at equal rates in columella cells of both cultivars despite their differences in root gravicurvature. The more graviresponsive roots of Calumet seedlings were characterized by a more strongly polar movement of 45Ca2+ from the upper to lower sides of their root tips than the less graviresponsive roots of Amylomaize seedlings. These results suggest that the decreased graviresponsiveness of horizontally-oriented roots of Amylomaize seedlings may be due to a delay in or decreased ability for polar transport of calcium rather than to smaller, more slowly sedimenting amyloplasts as has been suggested for their less graviresponsive coleoptiles.  相似文献   

7.
MOORE  RANDY 《Annals of botany》1990,65(2):213-216
Columella cells of seedlings of Zea mays L. cv. Bear Hybridgrown in the microgravity of orbital flight allocate significantlylarger relative-volumes to hyaloplasm and lipid bodies, andsignificantly smaller relative-volumes to dictyosomes, plastids,and starch than do columella cells of seedlings grown at I g.The ultrastructure of columella cells of seedlings grown atI g and on a rotating clinostat is not significantly different.However, the ultrastructure of cells exposed to these treatmentsdiffers significantly from that of seedlings grown in microgravity.These results indicate that the actions of a rotating clinostatdo not mimic the ultrastructural effects of microgravity incolumella cells of Z. mays. Zea mays L., gravity, microgravity, ultrastructure, clinostat, space shuttle, space biology  相似文献   

8.
Plasmodesmata linking the root cap and root in primary rootsZea mays are restricted to approx. 400 protodermal cells borderingapprox. 110000 µm2 of the calyptrogen of the root cap.This area is less than 10% of the cross-sectional area of theroot-tip at the cap junction. Therefore, gravitropic effectorsmoving from the root cap to the root can move symplasticallyonly through a relatively small area in the centre of the root.Decapped roots are non-responsive to gravity. However, decappedroots whose caps are replaced immediately after decapping arestrongly graviresponsive. Thus, gravicurvature occurs only whenthe root cap contacts the root, and symplastic continuity betweenthe cap and root is not required for gravicurvature. Completelyremoving mucilage from the root tip renders the root non-responsiveto gravity. Taken together, these data suggest that gravitropiceffectors move apoplastically through mucilage from the capto the root. Calyptrogen, open meristem, protoderm, root cap, root gravitropism, Zea mays  相似文献   

9.
The distribution of calcium (Ca) in caps of vertically- andhorizontally-oriented roots of Zea mays was monitored to determineits possible role in root graviresponsiveness. A modificationof the antimonate precipitation procedure was used to localizeCa in situ. In vertically-oriented roots, the presumed graviperceptive(i.e., columella) cells were characterized by minimal and symmetricstaining of the plasmalemma and mitochondria. No precipitatewas present in plasmodesmata or cell walls. Within 5 min afterhorizontal reorientation, staining was associated with the portionof the cell wall adjacent to the distal end of the cell. Thisasymmetric staining persisted throughout the onset of gravicurvature.No staining of lateral cell walls of columella cells was observedat any stage of gravicurvature, suggesting that a lateral flowof Ca through the columella tissue of horizontally-orientedroots does not occur. The outermost peripheral cells of rootsoriented horizontally and vertically secrete Ca through plasmodesmata-likestructures in their cell walls. These results are discussedrelative to proposed roles of root-cap Ca in root gravicurvature. Key words: Antimonate, calcium, columella cell, peripheral cell, root gravitropism, Zea mays L.  相似文献   

10.
MOORE  R. 《Annals of botany》1986,57(2):119-131
In order to determine what structural changes in graviperceptivecells are associated with the onset of root gravicurvature,the redistribution of organelles in columella cells of horizontally-oriented,graviresponding roots of Zea mays has been quantified. Rootgravicurvature began by 15 min after reorientation, and didnot involve significant changes in the (i) volume of individualcolumella cells or amyloplasts, (ii) relative volume of anycellular organelle, (iii) number of amyloplasts per columellacell, or (iv) surface area or cellular location of endoplasmicreticulum. Sedimentation of amyloplasts began within 1 to 2min after reorientation, and was characterized by an intenselystaining area of cytoplasm adjacent to the sedimenting amyloplasts.By 5 min after reorientation, amyloplasts were located in thelower distal corner of columella cells, and, by 15 min afterreorientation, overlaid the entire length of the lower cellwall. No consistent contact between amyloplasts and any cellularstructure was detected at any stage of gravicurvature. Centrally-locatednuclei initially migrated upward in columella cells of horizontally-orientedroots, after which they moved to the proximal ends of the cellsby 15 min after reorientation. No significant pattern of redistributionof vacuoles, mitochondra, dictyosomes, or hyaloplasm was detectedthat correlated with the onset of gravicurvature. These resultsindicate that amyloplasts and nuclei are the only organelieswhose movements correlate positively with the onset of gravicurvatureby primary roots of this cultivar of Zea mays. Zea mays, root gravitropism, ultrastructure, morphometry, graviperception  相似文献   

11.
MOORE  R. 《Annals of botany》1985,56(2):173-187
Roots of Allium cepa L. cv. Yellow are differentially responsiveto gravity. Long (e.g. 40 mm) roots are strongly graviresponsive,while short (e.g. 4 mm) roots are minimally responsive to gravity.Although columella cells of graviresponsive roots are largerthan those of nongraviresponsive roots, they partition theirvolumes to cellular organelles similarly. The movement of amyloplastsand nuclei in columella cells of horizontally-oriented rootscorrelates positively with the onset of gravicurvature. Furthermore,there is no significant difference in the rates of organellarredistribution when graviresponsive and nongraviresponsive rootsare oriented horizontally. The more pronounced graviresponsivenessof longer roots correlates positively with (1) their caps being9.6 times more voluminous, (2) their columella tissues being42 times more voluminous, (3) their caps having 15 times morecolumella cells, and (4) their columella tissues having relativevolumes 4·4 times larger than those of shorter, nongraviresponsiveroots. Graviresponsive roots that are oriented horizontallyare characterized by a strongly polar movement of 45Ca2+ acrossthe root tip from the upper to the lower side, while similarlyoriented nongraviresponsive roots exhibit only a minimal polartransport of 45Ca2+. These results indicate that the differentialgraviresponsiveness of roots of A. cepa is probably not dueto either (1) ultrastructural differences in their columellacells, or (2) differences in the rates of organellar redistributionwhen roots are oriented horizontally. Rather, these resultsindicate that graviresponsiveness may require an extensive columellatissue, which, in turn, may be necessary for polar movementof 45Ca2+ across the root tip. Allium cepa, onion, root, columella tissue, columella cell, gravitropism, calcium, ultrastructure  相似文献   

12.
Moore, R. 1985. A morphometric analysis of the redistributionof organellcs in columella cells in primary roots of normalseedlings and agravitropic mutants of Hordeum vulgare.—J.exp. Bot. 36:1275–1286. The redistribution of organeUes m columella cells of horizontally-orientedroots of Hordeum vulgare was quantified in order to determinewhat structural changes in graviperceptive (i.e, columella)cells are associated with the onset of root gravicurvature.The sedimentation of amyloplasts is the only major change incellular structure that correlates positively with the onsetof root gravicurvature, which begins within 15 min after re-orientation.There is no consistent contact between sedimented amyloplastsand any other organelles. Nuclei are restricted to the proximalends of columella cells in vertically-oriented roots, and remainthere throughout gravicurvature after roots are oriented horizontally.Root gravicurvature does not involve significant changes in(1) the volume of columella cells, (2) the relative or absolutevolumes of organelles in columella cells, or (3) the distributionof endoplasmic reticulum (ER). The size, number and sedimentationrates of amyloplasts in columella cells of non-graviresponsiveroots of mutant seedlings are not significantly different fromthose of graviresponsive roots of normal seedlings. Similarly,there is no significant difference in (1) cellular volume, (2)distribution or surface area of ER, (3) patterns or rates oforganelle redistribution in horizontally-oriented roots, or(4) relative or absolute volumes of organelles in columellacells of graviresponsive and non-graviresponsive roots. Theseresults suggest that the lack of gravi-responsiveness by rootsof mutant seedlings is probably not due to either (1) structuraldifferences in columella cells, or (2) differences in patternsor rates of organelle redistribution as compared to that characteristicof graviresponsive roots. Thus, the basis of non-graviresponsivenessin this mutant is probably different from other agravitropicmutants so far studied. Key words: Agravitropic mutant, barley, columella cell, gravitropism (root), Hordeum vulgare, ultrastructure  相似文献   

13.
In order to determine the involvement of glucose-6-phosphatasein mucilage secretion by root cap cells, we have cytochemicallylocalized the enzyme in columella and peripheral cells of rootcaps of Zea mays. Glucose-6-phosphatase is associated with theplasmalemma and cell wall of columella cells. As columella cellsdifferentiate into peripheral cells and begin to produce andsecrete mucilage, glucose-6-phosphatase staining intensifiesand becomes associated with the mucilage and, to a lesser extent,the cell wall. Cells being sloughed from the cap are characterizedby glucose-6-phosphatase staining being associated with thevacuole and plasmalemma. These changes in enzyme localizationduring cellular differentiation in root caps suggest that glucose-6-phosphataseis involved in the production and/or secretion of mucilage byperipheral cells of Z. mays. Zea mays, corn, glucose-6-phosphatase, columella cell, peripheral cell, mucilage, secretion, cytochemistry  相似文献   

14.
In order to quantify the ultrastructural changes that occur during cellular differentiation in an “open” type of root cap, we have performed a morphometric analysis of the ultrastructures of calyptrogen, columella, and peripheral cells of the root cap ofCucurbita pepo. The relative volumes of nuclei, nucleoli, and mitochondria decrease as cells move (i.e., differentiate) through the root cap. Before cells are sloughed from the cap, the relative volume of the vacuole increases by 250%. The relative volumes of plastids and plastid starch increase as calyptrogen cells differentiate into columella cells, but decrease as columella cells differentiate into peripheral cells. Dictyosomal volumes increase only as columella cells differentiate into peripheral cells. These results indicate that the five cell types comprising the root cap ofC.pepo are each characterized by a unique structure, and that the ultrastructural changes associated with cellular differentiation in root caps are organelle specific. These results are discussed relative to the functions of the various cell types of the root cap.  相似文献   

15.
MOORE  R. 《Annals of botany》1983,51(6):771-778
A morphometric analysis of the ultrastructure of columella statocytesin primary roots of Zea mays was performed to determine theprecise location of cellular organelles in graviperceptive cells.Vacuoles occupy the largest volume in the cell (11.4 per centof the protoplasm). The nucleus (9.51 per cent), amyloplasts(7.57 per cent), mitochondria (3.42 per cent), spherosomes (2.13per cent) and dictyosomes (0.55 per cent) occupy progressivelysmaller volumes of the statocytes. All organelles are distributedasymmetrically within the cell. Amyloplasts, spherosomes anddictyosomes are found in greatest numbers (and relative volumes)in the lower (i.e. ‘bottom’) third of the cell.The largest numbers and relative volumes of mitochondria arein the lower and middle thirds of the cell. Nuclei tend to befound in the middle third of the statocytes. Only the hyaloplasmis concentrated in the upper (i.e. ‘top’) thirdof Z. mays statocytes. When the sedimentation of amyloplasts(and the resulting exclusion of other organelles from the lowerthird of the cell) is corrected for, all cellular constituentsremain asymmetrically distributed within the cell. Therefore,the sedimentation of amyloplasts alone is not responsible forthe differential distribution of other cellular organelles inZ. mays statocytes. The quantitative ultrastructure of Z. maysstatocytes is discussed relative to the graviperceptive functionof these cells. Zea mays, corn, maize, root cap, stereology, columella, statocytes, graviperception, ultrastructure  相似文献   

16.
The redistribution of organelles in columella cells of horizontally-oriented roots of Hordeum vulgare was quantified in order to determine what structural changes in graviperceptive (i.e., columella) cells are associated with the onset of the root gravicurvature. The sedimentation of amyloplasts is the only major change in cellular structure that correlates positively with the onset of root gravicurvature, which begins within 15 min after re-orientation. There is no consistent contact between sedimented amyloplasts and any other organelles. Nuclei are restricted to the proximal ends of columella cells in vertically-oriented roots, and remain there throughout gravicurvature after roots are oriented horizontally. Root gravicurvature does not involve significant changes in (1) the volume of columella cells, (2) the relative or absolute volumes of organelles in columella cells, or (3) the distribution of endoplasmic reticulum (ER). The size, number and sedimentation rates of amyloplasts in columella cells of non-graviresponsive roots of mutant seedlings are not significantly different from those of graviresponsive roots of normal seedlings. Similarly, there is no significant difference in (1) cellular volume, (2) distribution or surface area of ER, (3) patterns or rates of organelle redistribution in horizontally-oriented roots, (4) relative or absolute volumes of organelles in columella cells of graviresponsive and non-graviresponsive roots. These results suggest that the lack of graviresponsiveness by roots of mutant seedlings is probably not due to either (1) structural differences in columella cells, or (2) differences in patterns or rates of organelle redistribution as compared to that characteristic of graviresponsive roots. Thus, the basis of non-graviresponsiveness in this mutant is probably different from other agravitropic mutants so far studied.  相似文献   

17.
MOORE  RANDY 《Annals of botany》1985,55(3):375-380
Primary roots of Ricinus communis having large caps and columellatissues are more graviresponsive than primary roots with smallcaps and columella tissues. The increased graviresponsivenessof roots with larger caps correlates positively with their columellatissues having larger length: width ratios than less graviresponsiveroots having smaller caps. Roots with wider tips typically aremore graviresponsive and have more extensive columellas thanroots with thinner tips. However, the size of the columellatissue correlates positively with graviresponsiveness, irrespectiveof the width of the root tip. These results indicate that differingdimensions of the columella tissue may be the basis for thediffering graviresponses of primary roots of R. communis. Root gravitropism, columella, root cap, primary root, Ricinus communis, castor bean  相似文献   

18.
MOORE  RANDY 《Annals of botany》1985,55(3):367-373
Cellular and tissue volumes in caps of primary and lateral rootsof Helianthus annuus have been measured in order to determinequantitatively how tissues and their functions are partitionedin root caps. Patterns of change in cellular dimensions andvolumes are similar in caps of primary and lateral roots. Significantincreases in cellular dimensions and volume occur during thedifferentiation of columella cells and the innermost peripheralcells. There are no significant changes in cellular dimensionsas either (i) the production and secretion of mucilage begins,or (ii) cells are sloughed from the cap. Tissues are partitionedsimilarly in caps of primary and lateral roots. indeed, rootcaps allocate 7–8 per cent of their volume for regeneration(i.e. calyptrogen tissue), 16–19 per cent of their volumefor graviperception (i.e. columella tissue), and approx. 38per cent of their volume for the production and secretion ofmucilage. These results are discussed relative to patterns ofcellular differentiation and tissue function in root caps. Helianthus annuus, root caps, primary root, lateral root, calyptrogen, columella, peripheral cells, tissue partitioning  相似文献   

19.
NG  YUK-KIU; MOORE  RANDY 《Annals of botany》1985,55(3):387-394
The effect of ABA on root growth, secondary-root formation androot gravitropism in seedlings of Zea mays was investigatedby using Fluridone-treated seedlings and a viviparous mutant,both of which lack carotenoids and ABA. Primary roots of seedlingsgrown in the presence of Fluridone grew significantly slowerthan those of control (i.e. untreated) roots. Elongation ofFluridone-treated roots was inhibited significantly by the exogenousapplication of 1 mM ABA. Exogenous application of 1 µMand 1 nM ABA had either no effect or only a slight stimulatoryeffect on root elongation, depending on the method of application.The absence of ABA in Fluridone-treated plants was not an importantfactor in secondary-root formation in seedlings less than 9–10d old. However, ABA may suppress secondary-root formation inolder seedlings, since 11-d-old control seedlings had significantlyfewer secondary roots than Fluridone-treated seedlings. Rootsof Fluridone-treated and control seedlings were graviresponsive.Similar data were obtained for vp-9 mutants of Z. mays, whichare phenotypically identical to Fluridone-treated seedlings.These results indicate that ABA is necessary for neither secondary-rootformation nor for positive gravitropism by primary roots. Zea mays, gravitropism, carotenoid-deficient, Fluridone, root growth, vp-9 mutant  相似文献   

20.
We used quantitative electron-probe energy-dispersive x-raymicroanalysis to localize endogenous Na, Cl, K, P, S, Mg andCa in cryofixed and freeze-dried cryosections of the cap (i.e.the putative site of graviperception) and elongating zone (i.e.site of gravicurvature) of horizontally oriented roots of Zeamays. Ca, Na, Cl, K and Mg accumulate along the lower side ofcaps of horizontally oriented roots. The most dramatic asymmetriesof these ions occur in the apoplast, especially the mucilage.We could not detect any significant differences in the concentrationsof these ions in the central cytoplasm of columella cells alongthe upper and lower sides of caps of horizontally-oriented roots.However, the increased amounts of Na, Cl, K and Mg in the longitudinalwalls of columella cells along the lower side of the cap suggestthat these ions may move down through the columella tissue ofhorizontally-oriented roots. Ca also accumulates (largely inthe mucilage) along the lower side of the elongating zone ofhorizontally-oriented roots, while Na, P, Cl and K tend to accumulatealong the upper side of the elongating zone. Of these ions,only K increases in concentration in the cytoplasm and longitudinalwalls of cortical cells in the upper vs lower sides of the elongatingzone. These results indicate that (1) gravity-induced asymmetriesof ions differ significantly in the cap and elongating zoneof graviresponding roots, (2) Ca accumulates along the lowerside of the cap and elongating zone of graviresponding roots,(3) increased growth of the upper side of the elongating zoneof horizontally-oriented roots correlates positively with increasedamounts of K in the cytoplasm and longitudinal walls of corticalcells, and (4) the apoplast (especially the mucilage) may bean important component of the pathway via which ions move ingraviresponding rots of Zea mays. These results are discussedrelative to mechanisms for graviperception and gravicurvatureof roots. Corn, gravitropism (root), ions, x-ray microanalysis, Zea mays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号